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ABSTRACT

Data Standards provide a way of expressing data in a uniform manner. In addition to

standardizing a format for encoding data, data standards allow for data to be exchanged

easily and meaningfully. Standards, commonly, enable applications to easily communicate

and pass data to one another; however, this seamless communication between applications

is impossible if applications rely on di↵erent data standards that encode data di↵erently.

This thesis proposes a workflow methodology for best-e↵ort automatic conversion or

translation of meta-data from one data standard to another while minimizing the loss

of data. The objective of the methodology is to validate the conversion and determine

the compatibility between two tools and their underlying data standards.The standard-

enabled workflow and methodology created should analyze a given workflow of tools to see

if data is lost within the worklow and ensure that the data is still compliant with a standard

as the data flows through various tools. To determine how well the methodology works,

Synthetic Biology tools are evaluated to see valid connections can be made with other

tools while maintaining compliance within the data standard supported by the tool.
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CHAPTER 1

INTRODUCTION

1.1 Motivation
Similar to how a language provides a basis for two people to communicate, data

standards provide guidelines for how data can be exchanged meaningfully and in a uniform

manner. For example, the Synthetic Biology Open Language (SBOL) Standard is used

to represent biological data within a genetic design [2]. Standards are important for the

reason that they allow an environment for multiple types of data to be understood. More-

over, standards enable applications to share and translate data across various applications

and platforms that do not necessarily all support the same data standard or only support

parts of a common data standard. Without data standards applications cannot rely on

a seamless communication since various applications can encode data di↵erently. Data

standards not only facilitate information to be exchanged freely, but enable workflows to

be designed to support data exchanges.

Generally speaking, standards provide crucial support for a software community. Dif-

ferent entities within a community might create di↵erent applications, but in order to

maintain re-usability and data reproducibility, a standard is used. Furthermore, standards

allow for interoperability between groups of applications to connect and share data.

However, while standards facilitate exchange of information, they do not guarantee that all

applications are compatible to exchange data or if an exchange is achieved, the translated

data makes sense.

Compliance is the idea of ensuring that applications are incorporating standards cor-

rectly, particularly after an exchange of data has taken place. For applications ex-

changing data under the purview of a standard, the exchange must be validated using

some guidelines of compliance. While it’s ideal to assume that an exchange between

tools is automatically successful, the data translated might not legal or valid any longer.
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Therefore, data exchanges between applications need to be evaluated under conditions to

ensure that compliance with the standard is met.

1.2 Contributions of this Thesis
The SBOL Standard is the main standard used as a case study within this thesis.

Specifically, this thesis presents a methodology for compliance testing specifically through

analysis of the applications supporting the SBOL standard. Additionally, this thesis

produces the updated information regarding current applications supporting the SBOL

Standard. This information is gained from the responses of the SBOL software survey.

Lastly, this thesis provides the results of analyzing the SBOL Test Suite to determine a

testing strategy that determines compatibility between applications and how the SBOL

data standard is internally supported within each SBOL application.

The main contributions of this research include

• Tabulated results of the current software tools/applications supporting the SBOL

Standard

• An analysis and evaluation of the SBOL Test Suite and an algorithm for compliance

testing of SBOL Applications

• The discussion of an algorithm for compliance testing of SBOL Applications.

1.3 Thesis Overview
This thesis is organized within four chapters. Background information on the SBOL

standard and data model is provided in Chapter 2. This chapter gives detailed overview of

the structural and functional components of the SBOL data model used as a platform to

encode biological design information. The results of the SBOL Software survey gathered

for various applications supporting the SBOL Standard is detailed in Chapter 3. Chapter

4 details the algorithm created to analyze SBOL Software Applications. Additionally, the

results and discussion of applying the testing algorithm to various applications is detailed

in Chapter 4. Lastly, Chapter 5 provides a summary of this thesis and the direction of

future work.



CHAPTER 2

SYNTHETIC BIOLOGY OPEN

LANGUAGE

Given the motivation for the importance of standards and compliance, the rest of this

thesis focuses on creating the methodology for compliance testing of standards. However,

due to the infinite amount of applications that exist and the standards which they encode,

this thesis specifically utilizes the Synthetic Biology Open Language (SBOL) and the

applications that support SBOL as the case study to analyze. This chapter introduces the

SBOL Standard.

The Synthetic Biology Open Language (SBOL) is developed to specify the information

within a biological construct. Biological designs are described in both a structural and

functional manner. While other biological design standards support representing infor-

mation in a unilateral manner, SBOL is able to describe a design in a multi-level fashion.

This evolution of Biological Design Standards is shown in Figure 2.1. FASTA represents

only the nucleotide sequencing data of a design, GenBank format provides more detail

regarding the components within a biological design by annotating the positions of the

sequence, but the complete sequence is required. SBOL provides a format describing

both structural and functional information of a genetic design. structural description

of a design is the information describing the chemical makeup of entities i.e sequencing

data [2]. The functional description of a design describes behavior of the design and the

interactions between entities [2]. SBOL 1 enables incomplete designs to be expressed in a

modular, hierarchical format through composition of DNA components without requiring

the sequences for components [1]. This is extended within SBOL 2 which enables more

types of components such as non-DNA components, proteins, and small molecules and

their interactions to be described [2]. Additionally, various software libraries have been

developed to ease the incorporation of the SBOL Standard into applications such as the

SBOL java library, libSBOLj [25]. In order to achieve the goal of describing biological

information on a structural and functional level, a well-defined data model exists.
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In addition to the SBOL data standard, there exists the SBOL Visual Standard that

enables genetic designs to be visually expressed. SBOL Visual is a graphical notation that

uses schematic “glyphs” to specify genetic components and systems [21]. Additionally,

SBOL Visual allows di↵erent regions of DNA components to be notated using these

“glyphs.” For example, Figure 2.1 visually represents the promoter, ribosome binding,

and terminator regions using SBOL Visual.

TATAATAGGATT GATTACAGGGTTAGC CTGATTACAGG ATGGCAGCCT

TATAATAGGATT GATTACAGGGTTAGC CTGATTACAGG ATGGCAGCCT

PromoterRBS CDS Terminator RBS CDS TerminatorPromoter

TATAATAGGATTCCGCAATGGATTACAGGGTTAGCAAATGGCAGCCTGATTACAGGGTTAGCAAATGGCAGCCT

FASTA

GenBank

SBOL 1

SBOL 2

TATAATAGGATTCCGCAATGGATTACAGGGTTAGCAAATGGCAGCCTGATTACAGGGTTAGCAAATGGCAGCCT

Figure 2.1: Biological Design Standards Format Evolution. SBOL expands beyond
previous formats which only allows expression of sequences to include hierarchical rep-
resentations of the structure and functional information of a genetic design. SBOL 1
allows for DNA components to be described without requiring sequences to be assigned
to each component. SBOL 2 furthers this format by enabling more types of components
and their interactions to be described. (figure courtesy of Zundel et al.[26])

To give an overview of the SBOL Data Model, all classes stem from the abstract Top

Level class. As the Top Level class is an abstract class, it is not directly referenced,

but rather indirectly implemented through six key classes. Those classes that inherit

from the Top Level class directly are considered as parent classes that are never nested

under any other object. The Top Level class is characterized through the following

classes: Sequence, ComponentDefinition, Model, ModuleDefinition, Collection,

GenericTopLevel. The ComponentDefinition, Sequence, and Collection classes
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and their supporting classes represent the structural entities within the SBOL Standard.

ModuleDefinition and Model classes’ purpose is to represent functional entities. Fig-

ure 2.2 shows the main data type classes representing biological information and their

relationships within the SBOL Standard. The dark green colored types are the “top

level” functional classes under which all other supporting functional SBOL classes fall

that are marked in light green. The dark yellow colored types denote the “top level”

structural components of SBOL and the classes marked with light yellow denote the main

supporting structural data types represented in the standard. These classes are explained

within the next few sections. The associations between classes are indicated using the

arrows as specified by UML semantics. Solid arrows indicates ownership of the class

which the arrow is pointing towards. Dashed arrows symbolizes one class referring to an

object of another class [2].

Figure 2.2: Main Classes of SBOL Data Model (figure courtesy of Beal et al.[2]). The
dark yellow classes represent the top level structural data classes within the SBOL Data
Model with the lighter yellow representing the supporting structural data classes. Dark
green classes represent the top level functional data classes with the supporting functional
data classes marked in light green. Lastly, the third group of data classes marked in blue
represent top level additional classes that do not strictly fall under a specific SBOL data
class.

At this point, there is a su�cient overview regarding the representation of the SBOL

Data Model to introduce the Top Level classes and their sub-classes essential to under-

standing how the data model functions as a system. First, Section 2.1 introduces the
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structural classes, followed by Section 2.2 that introduces the functional classes. Lastly,

Section 2.3 describes a third group of additional data classes that do not necessarily classify

completely as structural or functional classes. These last group of classes do not specify

biological design data, but act as extension classes to capture data that does not explicitly

fall under a SBOL Data class.

2.1 Structural Data Classes
The ComponentDefinition class represents the structural entities within a biological

design [2]. The components that represent DNA, RNA, protein i.e the structural entities

are designed using ComponentDefinition objects. While this is the main purpose of

this data class, ComponentDefinition objects is also used to represent other types

of structural entities that exist within a biological design such as small molecules and

complexes. A Sequence object, which is soon introduced, is used to define the genetic

coding within the structural entity. Additionally, there are sub-classes that further assist

this class including theComponent, SequenceAnnotation, and SequenceConstraint

classes which capture more details regarding the entity being represented. These classes

will be introduced later in chapter 2.

The Component class is a child of the ComponentDefinition class. Its purpose is

to define sub-entities and their structural uses. For example, a gene is represented using a

ComponentDefinition. However, the substructures within a gene include a promoter,

terminator, and a coding region which are represented by Components.

Within a Sequence object belonging to aComponentDefinition, it is ideal to notate

specific positions of the sequence. This function is achieved through a SequenceAnnota-

tion object. To specifically notate the position, a Location object is used. The Location

class is an abstract that allows a region of a coding sequence within a SequenceAnno-

tation object to be notated either through a Range, Cut, or GenericLocation object.

A Range object denotes the sequencing data between a given start and end position

of the data. Alternatively, a Cut object notates position at an specified index within

a sequence. Lastly, GenericLocation allows position access within a Sequence object

containing di↵erent genetic encodings or to annotate objects that lack sequence data.

In addition to notating specific positions of a sequence, a SequenceConstraint object

allows for rules to be specified regarding the location and orientation of substructures.

The Sequence class represents the genetic code within a ComponentDefinition

object. The main purposes of this class include representing the genetic coding of the
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constituents of a biological entity and identifying the meaning behind the genetic encoding.

For example, the nucleotide bases of a DNA molecule. Using the same example, the

elements of a nucleotide bases must be t, c, a, g.

2.2 Functional Data Classes
The ModuleDefinition class allows for grouping of the structural and functional

entities in a biological design [2]. The main purpose of this class is to track the function and

molecular interactions between entities within a biological design. A ModuleDefinition

references a set of FunctionalComponent objects, the Interactions between entities,

and Modules of a biological design.

As discussed earlier, the entities within a design are represented as ComponentDef-

inition objects. In order to instantiate the created object, a FunctionalComponent

object is defined. A FunctionalComponent object is the use case of a created entity.

Within a biological construct, rarely are entities the only participants in creating biological

processes. Rather, there are many entities that connect and interact within a design to

produce some function. For this purpose, Interactions are designed in order to provide

the context for how FunctionalComponents behave together such as representing the

biological processes of transcription and translation. Within a Interaction, a set of

Participation objects are typically created to denote the entities participating within an

Interaction.

ModuleDefinition objects can contain abstract entities representing various com-

ponents. These components do not necessarily reference a specific part with genetic

information, but act as placeholders for more specific entities to replace the abstract

entities. This functionality is achieved through a MapsTo object. A MapsTo object

defines the the relationships between the abstract entity and the specific component.

The Model class allows for an external computational model to be referenced and for

meta-data of the contents of a model to be tracked. This class allows for an abstraction

so that there isn’t duplication of designs.

2.3 Additional Data Classes
The Collection class allows for TopLevel objects with a common feature to be

grouped together. For example, a set of ComponentDefinition objects representing

the biological entity of a promoter are placed within a Collection to be accessed later.
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Annotation objects are created to attach information to any SBOL object. This

attached information does not change the meaning of the SBOL object, but adds extra

description to the referenced part. For example, a ComponentDefinition object might

contain an annotation with the location of the imported source data [2].

The last class to briefly mention within the SBOL Data Model are the GenericTo-

pLevel objects. These objects act as a catch all mechanism to retain information regarding

a biological construct which cannot be internally well-defined by an existing SBOL class.

The entities that are created using a GenericToplevel object contain annotations with

information that can be used to exchange non-SBOL related data.



CHAPTER 3

SBOL SOFTWARE SURVEY

This thesis is concerned with creating a testing methodology specifically for software

applications that support the SBOL Standard. In order to test applications, a survey

was created and dispersed to developers of applications within the SBOL community

with the goal of creating a compiled list of the software applications that currently

support SBOL. This chapter discusses the responses from the survey in Section 3.1. The

application information gained from the survey is utilized in evaluating the created testing

methodology which will be discussed in Chapter 4. Twenty-nine applications responses

were collected from the survey and the compiled results are shown in Table 3.1. The

questions within the survey focused on gaining a comprehensive understanding of an

application’s capabilities and extent of SBOL support the application provides. To meet

this objective, there are three main types of questions asked. The first was a general

overview of information regarding the application. The second type of questions included

the functionality and usage of the applications. The last type of questions related to the

capacity in which the SBOL Standard was supported. Section 3.1 discusses the results of

the first two types of questions whereas Section 3.2 discusses the current SBOL support

within applications.
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Function SBOL
Name R S V G M 1 2 v URL

BOOST [19] • • • boost.jgi.doe.gov

Cello [18] • • • cellocad.org

DeviceEditor[8] • • • • • • j5.jbei.org

DNAPlotLib[9] • • • dnaplotlib.org

Eugene [5] • • • • http://www.eugenecad.org

Finch • • • • • • synbiotools.org

GenoCAD • • • • • www.genocad.com

GeneGenie • • gene-genie.org

Graphviz • • www.graphviz.org

ICE[10] • • • • • public-registry.jbei.org

iBioSim[17] • • • • • • • www.async.ece.utah.edu/ibiosim

j5[11] • j5.jbei.org

MoSeC[16] • • • ico2s.org/software/mosec.html

Pigeon[4] • • pigeoncad.org

Pinecone • • • serotiny.bio

Pool Designer[23] • • • github.com/CIDARLAB/poolDesigner

Proto BioCompiler[3] • • • • • synbiotools.bbn.com

SBOLDesigner [24] • • • • • www.async.ece.utah.edu/SBOLDesigner

SBOLme[12] • • www.cbrc.kaust.edu.sa/sbolme

ShortBol[20] • • • shortbol.ico2s.org/sandbox.html

SynBioHub[13] • • • • • synbiohub.org

Tellurium[22] • • • • tellurium.analogmachine.org

TeselaGen • • • • www.teselagen.com

TinkerCell[7] • • • • • www.tinkercell.com

VisBOL[14] • • • visbol.org

VirtualParts[15] • • www.virtualparts.org

Table 3.1: A partial list of software supporting SBOL. An up-to-date list is maintained on
http://sbolstandard.org. The function column indicates if the tool is a (R)epository,
(S)equence design tool, (G)enetic circuit design tool, (M)odeling and simulation tool, or a
(V)isualization tool. The SBOL column indicates if it supports SBOL(1), (2), or (v)isual.
(figure courtesy of Myers et al [6])

3.1 Types of Software
Figures 3.1 and Figure 3.2 are a few examples of the questions asked regarding the

platforms and licenses applications supported. Most applications are hosted under an

Open-Source license. There is not any preference for any particular OS, but there are

slightly higher statistics for web-based applications.

One of the key points of this survey is the breakdown between how applications sup-

ported both structural and functional aspects of SBOL. Figure 3.3 shows the breakdown of

the applications supporting the SBOL Data Model. 41.4 percent of applications support

SBOL structurally only while only 13.8 percent of applications specifically are able to

support SBOL functionally. 44.8 percent of applications claim to support both. The

testing methodology must take into account that applications that state they can only

support only one level can only be tested with SBOL data examples supporting that level
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Figure 3.1: Availability of SBOL Applications

Figure 3.2: OS/Platform Requirements for Applications

of data. Another point is the applications that fall under ’both’ levels still could only

partially support parts of the classes within the data model.

Figure 3.4 references the functionality in which various applications provide. An

application can have multiple capabilities, so there is overlap among the categories. Pre-

dictably, however, the largest category is that applications allow for designing sequence

and biological/genetic constructs. Fifteen of the Twenty-nine applications state they could

support Biological/Genetic Circuit design and fourteen of twenty-nine state functionality
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for Sequence designing capability. Other categories include twelve of twenty-nine applica-

tions state they support Visualization of created designs.

Figure 3.3: Structural vs. Functional Levels of Applications

Figure 3.4: Software Functionality
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3.2 SBOL Support Within Applications
Figure 3.5 represents SBOL applications supporting SBOL Visual.SBOL Visual defines

a graphical notation to define genetic components and designs [21]. Of the applications

queried, 58.6 percent report they do support SBOL Visual.

Figure 3.5: Applications Supporting SBOL Visual

Figures 3.6 and 3.7 are questions asked regarding SBOL support integrated within

the application. Figure 3.6 are the results for whether applications are able to read and

understand the contents of a data within an SBOL example file. Figure 3.7 are the results

for whether applications are able to export a SBOL file containing valid SBOL data of the

design built within the application. Applications largely support SBOL 1.0 which only

supports structural classes within the data model. However, there were nine of twenty-nine

applications which support SBOL 2.0 which includes multi-level support as well support

within Genbank and FASTA formats.

With an understanding of the software applications that currently support SBOL

and the information of how they support SBOL, the next chapter discusses the testing

algorithm created to test SBOL applications and analyze a set of SBOL Examples used

as the input to test SBOL applications.
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Figure 3.6: Applications able to import SBOL

Figure 3.7: Applications able to export SBOL



CHAPTER 4

ANALYSIS OF THE SBOL TEST SUITE

The survey results provide a group of software applications to test the compatibility

between applications through their data exchanges. Furthermore, the survey provides

information regarding how each application supports SBOL. Since these results are self-

reported, the claims of what an application can support must be verified. The three

questions relating to SBOL support within the survey include if an application can support

SBOL Visual, import SBOL, and export SBOL. Di↵erent testing methods are required to

verify each level of SBOL support. First, to verify an application supports SBOL Visual,

there is simply no other way to verify an application’s correct usage other than through

manual inspection. Additionally, to verify the claims that an application can export legal

SBOL data, the SBOL Validator tool can be used. The SBOL Validator is a software

tool that checks the validity of SBOL files to verify that the SBOL Standard is correctly

implemented [26]. Checking for the first two types of SBOL support is fairly easy. However,

verifying the claims of whether an application imports SBOL data correctly requires more

in-depth testing. Import operations are slightly more complex to ensure that the meaning

of data imported is not changed upon an import operation. Round-trip testing is used

to test import operations. A round-trip test consists of importing SBOL data into an

application and then exporting the imported data and performing a comparison operation

on the imported data and exported data. If no di↵erences exist between the input and

output data, then no data has been transformed or lost and the application is able to

correctly import SBOL data.

A series of SBOL files representing various biological designs were previously created to

test the libSBOLj library. These examples are used as the input data to the applications

learned from the survey to implement any of the various testing strategies of SBOL

support. First, these examples are analyzed to determine areas of the SBOL Data Model

represented and how robustly SBOL was represented. This analysis begins the start of the

testing methodology to robustly test and verify the claims from the survey responses of
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the SBOL software applications. Section 4.1 of this chapter details the algorithm created

to analyze the SBOL Suite of Examples. The results of the analysis are discussed within

Section 4.2.

4.1 Algorithm for the Analysis
In order to analyze applications supporting the SBOL Standard, the algorithm estab-

lished creates a logical understanding of the various biological designs in relation to the

SBOL Data Model. These biological designs are created for the purpose of testing SBOL’s

java library libSBOLj. While these designs are robust in the diversity of both structural

and functional classes integrated from the SBOL Data Model and the pairings of classes,

there is not an obvious way to identify how an application supports SBOL when given

one of these biological designs as input. Therefore, this following section explains the

algorithm created to organize the created biological designs.

Algorithm 4.1: Pseudocode to Count Data Types in an SBOL Example
Input: SBOLDocument doc, Set Files, SetTypes
Output: Map hS,Ci m
foreach f in Files do1

doc = read(f)2

foreach t in Types do3

if doc.contains(t) then4

c = count(doc, t)5

map t to c6

The goal of this algorithm is to understand the current data given within the series

of SBOL files representing various biological designs. The files are placed into a set and

then each file is read into an SBOLDocument individually using libSBOLj. As explained

within Algorithm 4.1, the types introduced within the SBOL Data Model are given as set.

Then each file identifies the types contained and a count is associated with each type. The

purpose of this is to understand the extent of the SBOL Data Model support within the

existing biological designs.

The second goal of the algorithm is to create relationships between biological designs

that contain the same type of data. A cluster is defined to have a set of SBOL data types

and a set of the files with the data that contains those specific data types.

Algorithm 4.2 shows the pseudocode of the function to create the clusters. The set

of files with the associated data counts is given as input. The function works such that
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Algorithm 4.2: Pseudocode to Create Data Type Clusters

Input: Map hF, Map hT, Cii m, Set Files
Output: Map hSetF, Set clusi clusters
while Files is not empty do1

f = choose f in Files2

remove f from Files3

Set givenTypes = m.get(f)4

create Set cluster5

create Set types6

add f to cluster7

foreach t in givenTypes do8

if t(c) != 0 then9

types.add(t)10

foreach f in Files do11

Set check = m(F)12

flag = true13

foreach t in givenTypes do14

if given(t) != 0 and check(t) == 0 then15

flag = false16

if given(t) == 0 and check(t) != 0 then17

flag = false18

if flag then19

cluster.add(F)20

an SBOL file is chosen at random and removed from the remaining list of files. A cluster

is created with the chosen file as the only member included. Then using the information

previously gained from the algorithm 4.1, the types existing in the file with counts greater

than zero are placed into a set of data types. In order to determine what other files are

members of this cluster, every other file is checked such that the count data is the same

for each file as the chosen file, then the current file is placed into the cluster. Once all the

files are checked and then a set of clusters with files that contain common data types is

created.

While the clusters are able to group the SBOL data files, the third and final goal of

the algorithm is to create relations between the clusters. In order to do this function 4.3

iterates through the clusters and chooses two di↵erent clusters at random. One cluster

is marked arbitrarily as the parent and the other cluster as the child. To see if a direct

relation exists between the two clusters, each cluster within the remaining clusters is

checked to ensure that the third cluster is not a subset of the parent cluster and the child

is not a subset of the third cluster. The subset relation in this function is defined through
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Algorithm 4.3: Graph Creation pseudocode representing SBOL Examples

Input: Map hSetF, Set clusi clusters
Output: Graph g
for Parent p in clusters do1

for Child c in clusters do2

if p == c then3

continue4

if child not subset of parent then5

continue6

flag = true; for otherCluster in clusters do7

if otherCluster == parent or otherCluster == child then8

continue9

if otherCluster subset of parent and child subset of otherCluster then10

flag = false11

if flag then12

Edge e from parent to child13

the common data types. If every data type belonging to a cluster also is contained within

another cluster, then there the first cluster is considered a subset of the second cluster.
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4.2 Results of the Analysis
This section aims to discuss the key details of the graph from analyzing SBOL examples

to test SBOL applications. Figure 4.1 is the graphical representation of analyzing SBOL

examples based on their data types and their relations. The diamond shaped source

nodes represent a superset of the data types common to a group of examples. No

overlaps exist between the source nodes because each source node represents one unique

superset with one particular set of data types that are represented. The remaining

portion of the graph consists of child nodes that follow parent-children relationships

based on the groups of data types found within examples. Each child node stems from

one or more of the source nodes and each child node consists of examples that contain

a subset of the SBOL data types contained by its immediate parent. An example of

how to interpret nodes in the graph includes the parent node 6 which is a source node

whose set of data types consists of {Participation, Interaction, ModuleMapsTo,

SequenceAnnotation, Sequence, FunctionalComponent, Range, ModuleDefi-

nition, Model, Component, Module, ComponentDefinition, Location}. There

is one biological design example that represents the data types belonging to node 6.

Furthermore, there exists no such node containing a superset of the data types belonging

to node 6. Every child node descending from 6 contains a subset of data types belonging

to this node. For example, Node 11 is a child node of 6 and its data types consist of

{String Annotation, URI Annotation, SequenceAnnotation, GenericTopLevel,

Collection, Sequence, Component, Range, Annotation, ComponentDefinition,

Location}.

As mentioned before, SBOL is organized into structural and functional data types.

Each node is marked in either the color green or yellow to denote whether the set of

examples belonging to that node represent either structural or functional data types.

Yellow colored nodes represent structural data types and green colored nodes represent

functional data types. One main observation derived from the graph is there exists subtrees

of nodes that point to examples representing only structural or functional data type sets.

For example, Node 19 is a source node which only contains structural data types. The

details from this node is seen more clearly within Table 4.2 which shows the data types

represented by each node. The data types within Node 19 include Top Level classes such

as ComponentDefinition, Sequence, and supporting classes including SequenceAn-

notation, Location, and SequenceConstraint, GenericLocation, Component, and
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Range. Any nodes whose ancestors include this source node only represents structural

data types. For example, child nodes 13, 22, 8, 12, 24, and 7 contain only structural

data. This is however di↵erent for source nodes marked yellow. These source nodes

consist of examples that either contain functional or structural data. For example, Node

6 is marked green, but its two child nodes are marked di↵erent colors. Child node 11 is

marked yellow, so there is only structural data that is being represented in this subset of

examples. However, Node 5 contains examples that represent functional data. Identifying

the nodes as structural vs. functional data is an important feature of the graph to identify

what type of data examples represent. This information is used as a testing strategy for

testing applications claiming to support either structural, functional, or both types of

data.

The last key benefit the graph provides are the pathways that can be followed from

any one node to narrow down the possibilities of a unique set of data types represented by

a group of examples. An example pathway is Node 19 which contains 12 examples that

represent the same group of data types. From this node, Node 13 contains a subset of the

data types within Node 19. If this chain of nodes continues, Node 22 will contain a subset

of the data types contained within Node 13. These pathways are significant because they

provide precision to narrow down the possibilities when testing applications to determine

exactly what areas of the SBOL Data Model the application can support. For example,

if an application fails to read the data from any of the examples that fall under source

node 6, then the next step to choose to data belonging to from a child node such as node

5. Since the child node represents a subset of the data types, then the testing method

include attempting to read in the data from an example within this node and determining

if the application properly read the data. If the application once again fails to read the

data belonging to the next node within a pathways, then this process can be continued

until a node is reached where an application can successfully read the data belonging to

an example from that node.

Table 4.3 provides a brief overview of the results examined from Figure 4.1. The

results are gained from analyzing eighty-eight SBOL examples. Furthermore, excluding

abstract classes within the SBOL Data Model, there are nineteen data classes. Given this

information, Node 6 contains the maximum number of data types that exist in a set of

examples which is fifteen types. One of the main insights the graph provides indicate

that there does not exist at least one example with every data type of the SBOL Data
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Model being represented. While there does not exist an all-inclusive example, every single

data type is at least represented once within an example. This statistic is determined by

performing a union operation of the data types within all the source nodes within the

graph and determining that one instance of every data type exists in at least one example.

Of the nineteen existing data types, all nineteen types are represented in an example.

Nineteen of these data types are represented at least once within an example.

Another detail the graph provides from analyzing the robustness of the examples is

the disproportionate variety of examples representing certain data types. The largest

group of examples with a set of common data types is represented by Node 28 which

contains twenty-eight examples. This statistic is significant because of the complete set

of examples given, about 31 percent of the examples are specifically testing only types

such as Sequence, ComponentDefinition, and Collection, which are the data types

belonging to Node 28. Node 19, which is also a source node, represents the second largest

group with twelve examples and there are eight data types common to the examples. The

specific set of data types can be found in Table 4.2.The graph allows for analysis that the

examples are not broadly testing the scope of the SBOL Data Standard proportionally.

Results determine that most examples contain Sequence and ComponentDefinition

data types, but not many examples contain instances of the Cut or MapsTo data types.

Therefore, the examples do not proportionally cover the data types being represented.

One last key insight is the imbalance in the types of data existing within the examples.

The analysis shows that 69 percent of the examples represent only structural data classes.

The nodes with the most number of examples, as mentioned above, contain only structural

data classes in each example. Sixty-one of the eighty-eight examples are marked as

supporting only structural data types internally. In contrast, only 31 percent of examples

which is composed of twenty-seven examples contained functional data.

The purpose of analyzing the examples and creating a graphical representation of

the data types being represented is to provide some insight into how to logically test

applications that support SBOL. There now exists a method to be able to test applications

and validate the self-reported information taken from the survey responses. One possible

strategy is given an application, an example from each the source nodes can be imported

into an application to determine the classes it can support, If the application fails to

properly import the data within any of these examples, then the examples belonging to

the next level child nodes can be imported and checked. This process can be continued
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to see what parts of the SBOL data model the application truly does support. This

type of testing provides some confidence that the application successfully supports those

data types of the SBOL Data Model. Another testing strategy to verify an application

claims to supporting both structural and functional data, the data within the examples

belonging to the clusters identifying only as structural or functional can be imported into

an application. Lastly, round-trip tests can be used to determine if an application is able

to exchange data accurately. An example of a round-trip test includes importing a file

containing SBOL data into an application, then exporting the data that was just imported

into a file. If the data within the output file matches the data within the imported data

file, then no data was lost or transformed which is considered a successful round-trip test.
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Node Example Count Data Count Source Structural Functional
1 4 6 •
3 1 15 • •
4 1 10 •
5 1 13 •
6 1 15 • •
7 3 1 •
8 2 1 •
9 4 1 •
10 1 2 •
11 3 9 •
12 5 6 •
13 1 3 •
14 2 1 •
15 1 3 •
16 1 3 •
17 1 8 • •
18 1 5 •
19 12 8 • •
20 3 1
21 28 3 •
22 1 2 •
23 6 7 •
24 2 2 •
25 1 2 •
26 2 1 •

Table 4.1: Each entry represents information within each cluster. The Example Count
column indicates the number of examples within that cluster. The Data Count column
represents the number of unique data types found within that set of examples. The
Source column indicates whether that cluster is a root node in the graph. The Structural
and Functional columns indicate the examples within that cluster represent structural or
functional data.
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Node Data Types
1 A, SA, S, R, CD, L
3 A,C,I,SA,S,R,MD,SC,MDL,GTL,C,Comp,Mod,CD,L
4 P, MD, SC, I, MPS, S, FC, Comp, Mod, CD
5 P, I, MPS, SA, S, FC, R, MD, MDL, Comp, Mod, CD, L
6 P,A,MPS,SA,S,FC,R,MD,MDL,GTL,C,Comp,Mod,CD,L
7 S
8 CD
9 C
10 A, CD
11 A, SA, GTL, C, S, Comp, R, CD, L
12 SA, S, Comp, R, CD, L
13 SC, Comp, CD
14 MD
15 MD, I, FC
16 A, GTL, CD
17 A, SA, GTL, S, Comp, R, CD, L
18 Cut, SA, S, CD, L
19 SC, SA, GL, S, Comp, R, CD, L
20 GTL
21 C, S, CD
22 Comp, CD
23 SA, C, S, Comp, R, CD, L
24 S, CD
25 C, S
26 MDL

Table 4.2: Each entry represents the data types found within a set of examples within
that node clusters. CD denotes ComponentDefinition, S denotes Sequence, C denotes
Collection, SA denotes SequenceAnnotation, SC denotes SequenceConstraint, L denotes
Location, R denotes Range, Cut denotes Cut, Comp denotes Component, MD denotes
ModuleDefinition, FC denotes FunctionalComponent, Mod denotes Module, I denotes
Interaction, P denotes Participation, MDL denotes Model, MPS denotes MapsTo, GTL
denotes GenericTopLevel, A denotes Annotation
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Figure 4.1: A graphical representation of SBOL Examples and their relations based on
the data types supported. Diamond nodes are source nodes and have the largest number
of SBOL data types represented in this cluster of examples. Nodes colored yellow indicate
the examples that only represent the structural SBOL Data Classes. Green nodes indicate
the examples that represent the functional SBOL Data Classes.

Graph Statistics
SBOL Examples 88

SBOL Data Classes 19
Maximum Data Classes 15 (79%)
Data classes Tested 19 (100%)
Structural Examples 61 (69%)
Functional Examples 27 (31%)

Table 4.3: This table represents the results observed from analyzing SBOL Biological
Design Examples



CHAPTER 5

CONCLUSIONS

5.1 Summary
This thesis presents a methodology for analyzing software applications and their sup-

port of the SBOL Standard. In order to create the methodology, a list of the current SBOL

software applications and the data regarding each application’s functionality, purpose, and

capacity of SBOL support was compiled.

In addition to this compiled data, an algorithm was created to analyze the list of

existing biological designs that were created to test the libSBOLj java library. By inspect-

ing each biological design to determine the classes of the SBOL Data Model represented

internally, clusters were created such that each cluster tracks the same set of SBOL data

types for a specific group of biological design examples. These clusters were then paired

to create parent-child relationships and segregated into two separate sets based on if the

data types within the cluster represent structural or functional data classes.

The algorithm to analyze the SBOL examples produced a testing graph that can be

used to test an SBOL Application and determine its level of SBOL Data Model support.

Applications claiming to support both structural and functional SBOL data classes can be

more accurately verified by performing import and export operations using the examples

belonging to the nodes within the graph marked as structural or functional only. The

testing methodology created is able to test applications and validate the self-reported

information taken from the survey responses.

5.2 Future Work
This thesis began the work to validate the compatibility between SBOL applications

through data exchanges. However, to be able to perform the data exchanges, the SBOL

Suite of examples need to be completed to have multiple examples representing the full

range of the SBOL Data Model. One aspect in representing all the SBOL classes within
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various contexts is if the union of all the data types of a node’s children is taken, then every

single data type belonging to the parent node should be represented within at least one

example in a child node. The examples also need to have more distribution of examples

supporting a set of data types. Certain nodes contain twenty-eight examples whereas other

nodes only contain one example representing a particular data type set. The solution to

this goal is to simply include more examples with a wider representation of data type

pairings.

Additionally, there need to much more representation of functional classes within

various examples. There is an overwhelming amount of examples that only represent

structural classes currently. Applications that claimed to support functional classes cannot

be properly tested since there is not nearly enough examples with which to test. Once

this test suite is complete, then SBOL applications can be more accurately tested to

determine their compliance. The testing methodology will then be extended to validate

the compatibility between applications through their data exchanges.
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