
Promotion of Data Reuse in Synthetic Biology

by

J. V. Mante

B.A., University of Cambridge, 2018

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Biomedical Engineering

2022

ii

Mante, J. V. (Ph.D., Biomedical Engineering)

Promotion of Data Reuse in Synthetic Biology

Thesis directed by Prof. Chris J. Myers

Synthetic biology is a movement to standardize genetic engineering and make it more re-

producible and accessible by using functional descriptions of desired circuits. Such descriptions

can then be converted to genetic designs via genetic design automation tools. Subsequently, the

genetic designs can be used to generate models for in silico experimentation using automatic model

generators. Both of these technologies rely on access to libraries of genetic part information en-

coded in standard, machine-readable ways. The Synthetic Biology Open Language (SBOL) can

be used together with SynBioHub (a genetic part repository) to encode and store the information.

However, the use of SynBioHub for the storage and reuse of parts is still very limited. This is

due to insufficient metadata (making it difficult to find parts or judge their usefulness) and the

effort required to submit parts to the repository. This dissertation aims to decrease the barriers

to part reuse and thus enable a more automated synthetic biology workflow. Hence, an integrated

curation workflow is proposed based on the contributions of the dissertation. The contributions are:

a proposed SBOL Data Content Standard, tools for working with genetic parts in spreadsheets, a

framework to modularly extend the SynBioHub part repository, and the lessons learned from the

analysis and curation of data from existing genetic data repositories.

Dedication

For my brothers Hein and Eltjo, may it inspire you

iv

Acknowledgements

This dissertation would not have been possible without the support of many people and lots

of cups of peppermint tea. First, I would like to thank my advisor Chris Myers for giving me the

opportunity to conduct the research presented in this dissertation. I learnt a great deal from him,

both academic (particularly developing my computer science knowledge) and non-academic. Chris

gave me the freedom to explore, supported conference attendance, pushed me to write publications,

and gave me the chance to teach and mentor my own students. Furthermore, he was very supportive

during times of crisis including, but not limited to, the difficulties of the coronavirus pandemic.

In addition to Chris Myers, I want to thank my supervisory committee: Mirela Alistar, Brian

DeDecker, Duygu Dikicioglu, and Ryan Layer. Their feedback helped steer and improve work.

As a member of the Genetic Logic Lab, I have worked alongside many talented students: Lean-

dro Watanabe, Tramy Nguyen, Michael Zhang, Zach Zundel, Pedro Fontanarrosa, Lukas Buecherl,

Ben Hatch, Eric Yu, Julian Abam, Sai Samineni, Payton Thomas, Thomas, Stoughton, James

Scholz, Logan Terry, Sam Bridge, Oliver Flatt, and Meher Samineni. I would like to thank them

for collaborations, discussion of ideas, and the “lab social activities”. They provided a wonderful

atmosphere and much laughter. I would also particularly like to thank Zach, Lukas and Pedro for

helping me through deaths in the family, the NCAR fire, and bouts of imposter syndrome.

Additionally, I would like to thank the Google Summer of Code students who I had the

opportunity to work with: Isabel Pötzsch and Linhao Meng.

I would also like to thank those who are involved in the development of the software tools

that are used in this research: SynBioHub, SYNBICT, and the community representing SBOL. In

v

particular, Jake Beal, Bryan Bartley, Nic Roehner, and Tom Mitchell. The work presented in this

research could not have been possible without these developers.

Furthermore, I would like to thank my family and friends for their encouragement and good-

natured teasing. The support they provided both intra and inter time zones was much appreciated.

The Martis and Raos helped me find my feet in Salt Lake City and the Bishop Cohort gave me a

home during the pandemic. My flatmates provided a lot of late night support including overlooking

dirty dishes and dishing dirt. The ONLs kept me grounded with the slightly sporadic weekly calls.

My parents, brothers, and grandparents helped me get this far and continued to believe in me even

in moments when I didn’t. I wouldn’t have been able to do it without you.

I would also like to thank a few influential teachers who helped me develop and follow my

love of learning: Mrs. Herringer-Brock, Mrs. Baker, Dr. Welford, Mrs. Betts, Valerie Chock, Jim

Haseloff, and Tim Weil.

This research is based upon work supported by the National Science Foundation under Grants

CF-1748200, and 1939892. It was also supported by a Dean’s Graduate Assistantship at the

University of Colorado Boulder.

vi

Contents

1 Introduction 1

1.1 Synthetic Biology Workflow . 2

1.2 Contributions . 4

1.3 Dissertation Outline . 6

2 Background 8

2.1 Genetic Components . 8

2.2 Standards . 14

2.3 Repositories . 16

2.4 Metadata in Databases . 17

2.4.1 Library Science Principles . 18

2.4.2 Minimum Information Standards . 18

2.5 Automated Curation . 19

2.6 Search . 20

2.7 Terminology Equivalence . 22

3 The Extension of SynBioHub via a Plugin Interface 23

3.1 Plugin Specification . 24

3.1.1 Submit . 27

3.1.2 Visualization . 32

3.1.3 Download . 35

vii

3.2 Plugin Templates . 37

3.2.1 Templates and Docker . 37

3.2.2 Python Templates . 38

3.2.3 JavaScript Templates . 41

3.3 New Plugin Specifications . 41

3.3.1 Curation . 43

3.3.2 Search . 44

3.3.3 Index . 50

3.3.4 Link . 53

3.4 Example Plugins . 54

3.5 Further Work . 54

4 Excel-SBOL Converter 56

4.1 Excel-to-SBOL Evolution . 58

4.1.1 Iteration 1: Fixed Column Templates . 58

4.1.2 Iteration 2: Flexible Column Templates . 63

4.1.3 Iteration 3: Multi-Library Templates . 67

4.2 Excel-to-SBOL Case Study . 72

4.3 SBOL-to-Excel . 74

4.4 SBOL-to-Excel Case Study . 74

4.5 Submit and Download Plugins . 75

4.6 Conclusions . 76

5 Post Hoc Curation 79

5.1 Post-Hoc Curation Pipeline . 80

5.2 Example Applications of the Post-hoc Curation Pipeline 82

5.2.1 iGEM . 82

5.2.2 ACS Dataset . 90

viii

5.2.3 Addgene . 96

5.3 Conclusions . 100

6 A Structure for Integrated Curation 104

6.1 The SBOL Data Content Standard . 106

6.2 Research Workflow with Integrated Curation . 109

6.3 Realization of the Integrated Curation Workflow . 115

6.3.1 Plugins . 115

6.3.2 Excel-SBOL Converter . 119

6.4 Challenges for the Integrated Curation Workflow . 119

6.4.1 Gaps Between Workflow Stages . 119

6.4.2 Resistance to Uptake . 121

7 Conclusions 122

7.1 Summary . 122

7.2 Future Work . 124

7.2.1 Plugins . 125

7.2.2 Search . 125

7.2.3 User Interface Development . 125

7.2.4 Excel Templates . 126

7.2.5 Further Curation Libraries . 126

7.2.6 Further Curation of iGEM, ACS, and Addgene Libraries 126

7.2.7 SBOL Data Content Standard Extension . 126

7.2.8 Framework to Assess Data Reuse . 127

7.2.9 Community Uptake . 127

ix

Bibliography 128

A Supplemental iGEM Figures 149

B GitHub Repositories 153

B.1 Plugins . 153

B.2 Excel-SBOL . 154

B.3 Post-hoc Curation . 155

x

List of Tables

3.1 Currently Available Plugins . 55

5.1 iGEM SYNBICT: Frequency of Annotations per Sequence 85

5.2 iGEM SYNBICT: Number and Percentage Cover of Specific Annotations 86

5.3 iGEM: Real versus Spurious Descriptive Field Lengths 88

5.4 iGEM: Basic Unique Descriptive Field Lengths . 89

5.5 ACS: Top 10 Most Common Supplemental File Types 91

5.6 ACS: Types of Named Entity Recognised . 94

5.7 ACS: Sequences Annotation by File Type. 94

5.8 ACS: Top Annotations of Supplemental Sequences 95

5.9 ACS: Top Ten Terms Extracted by NER Type . 95

5.10 Addgene: Frequencies of Annotation Properties . 99

5.11 Addgene: Species Annotations Frequency of Occurrence 101

5.12 Addgene: Top 50 Sequence Annotations . 102

6.1 SBOL Data Content Standard . 108

6.2 SBOL Data Content Standard None and Other Terms 110

Algorithms

3.1 Submit Plugin API . 31

3.2 Visualization Plugin API . 34

3.3 Download Plugin API . 36

3.4 Curation Plugin API: STATUS . 43

3.5 Curation Plugin API: EVALUATE . 45

3.6 Curation Plugin API: RUN . 46

3.7 Curation Plugin API: SAVE . 47

3.8 SEARCH Plugin API: STATUS . 48

3.9 SEARCH Plugin API: PARAMETERS . 49

3.10 Search Plugin API: RUN . 51

4.1 Excel-to-SBOL Iteration 1: Part Library Processing 60

4.2 Excel-to-SBOL Iteration 1: Composite Library Processing 62

4.3 Excel-to-SBOL Iteration 2: Flexible Column Templates 64

4.4 Excel-to-SBOL Iteration 3: Multi-Library Templates 69

4.5 SBOL-to-Excel Iteration 2: RDF Conversion . 75

xii

List of Figures

1.1 Design-Build-Test-Learn Cycle and Its Implementation 2

2.1 Central Dogma of Biology: DNA to RNA to Protein 9

2.2 DNA Binding Proteins OR Gate . 10

2.3 Epigenetic NOT Gate . 10

2.4 Recombinase AND Gate . 11

2.5 CRISPRi NOR Gate and CRISPRa OR Gate . 12

2.6 RNA IN/OUT NOT Gate . 13

2.7 Comparison of Different Genetic Part Standards: FASTA, GenBank, and SBOL . . . 15

3.1 Plugin Administrative Interface . 25

3.2 SynBioHub-Plugin API Diagram . 26

3.3 SynBioHub Submit Interface with Plugin Dropdown 28

3.4 SynBioHub View Endpoint with Visualisation Plugins 29

3.5 SynBioHub endpoint with Download Plugins . 30

3.6 Visual Template . 40

3.7 Download Template . 42

3.8 Search Plugin Facet Example . 52

4.1 Excel-SBOL Converter Overview . 57

4.2 Evolution of the Excel-to-SBOL pipeline over time 59

4.3 SD2 Library Template . 60

xiii

4.4 SD2 Composite Template . 61

4.5 Column Definitions Sheet for Flexible Column Templates 66

4.6 Initialization Sheet for Multi-Sheet Templates . 68

4.7 Column Definitions Sheet for Multi-Sheet Templates 70

4.8 Excel-SBOL Example: Flapjack Spreadsheet . 73

4.9 Spreadsheet Output by the SBOL-to-Excel library 76

4.10 Integration of the Converter Plugins with SynBioHub 77

5.1 Post-hoc Curation Pipeline . 80

5.2 iGEM: Word Cloud of Species Frequency . 89

5.3 Example of an Addgene Plasmid Page . 97

6.1 Elements of an Interactive Paper . 105

6.2 Research Workflow with Integrated Automation . 111

6.3 Knowledge Enabled Search . 113

6.4 Sequence Curation Interface . 116

6.5 Publication Curation Interface . 117

6.6 Plugins in the Research Workflow with Integrated Automation 118

6.7 Excel-SBOL Converter in the Research Workflow with Integrated Automation 120

A.1 Variation of iGEM description by Year . 150

A.2 Variation of iGEM Description by Month . 151

A.3 Variation of iGEM description over time by Group 152

Chapter 1

Introduction

Synthetic biology is a movement to standardize genetic engineering and make it more re-

producible. Founded on the idea of composable DNA parts, synthetic biology seeks to enable

construction of complex genetic devices with predictable functions [149]. This has largely proved

possible [108, 157, 42], underpinned by the Design-Build-Test-Learn (DBTL) cycle. The DBTL

cycle aims to decouple specialist biology knowledge from the design of a circuit: by separating the

specification of function from the choosing of the parts to implement the function. However, the

choice of parts remains a difficult problem as there are few effective means to communicate part

information amongst designers. Early in the development of synthetic biology, parts databases were

recognized as key for information exchange. Yet, many of these have been ineffective in communi-

cating data and metadata like function, intended host, and assembly method. Thus, databases are

rarely used in genetic design, especially for organisms that are not Escherichia coli. This leaves

the field in a state where relevant part performance data is distributed among results and methods

sections, paper supplemental files, and tables of sequences — shifting the work of a genetic designer

from design to searching through disparate sources for part information. Many designers simply use

a custom set of parts curated from past experience or screen new parts rather than use a database

or mine the literature. This work aims to reduce the effort required to find biological parts, and

thus increase their reuse.

2

1.1 Synthetic Biology Workflow

The Synthetic biology workflow is based on the DBTL cycle (Figure 1.1). It is iterative, and

the goal is to be increasingly focused on the functional description of circuits rather than the Build

and Test phases. For this to be possible, part selection, modeling, assembly, and screening should

all require little user input and be increasingly automated. To enable this, tools are required to

go from functional descriptions to genetic design descriptions [155, 154, 158, 42], and from design

descriptions to models [68]. In order to design software applications that can automate the process

of designing and modelling a genetic circuit, biological part information must be encoded using

data standards and stored in accessible repositories.

Figure 1.1: The Synthetic Biology Workflow. A: The Design, Build, Test, Learn workflow. B: How
the Design, Build, Test, Learn workflow relates to implementation. The Design stage requires the
description of circuit function, the selection of parts to implement the function, and the modelling
of the chosen design. If the user is happy with the model predictions, parts can then be assembled in
vitro or in vivo and the resulting circuits can be screened for functionality. The results of screening
are analyzed and inform the next design.

There are several data standards used to store genetic information (see Chapter 2), how-

ever the one developed specifically for synthetic Biology is the Synthetic Biology Open Language

3

(SBOL) [9]. It is a Resource Description Framework (RDF) standard that stores all information as

triples: subject, predicate, object. For example, Gene A (subject) up-regulates (predicate) Gene B

(object). SBOL was developed as a standard to support the specification and exchange of biological

design information. Complex relationships can be described using the SBOL format, including the

description of functional genetic sequences (e.g. a promoter), their conglomeration into a composite

part (e.g. a promoter, ribosome binding site, coding sequence, and terminator), and the interaction

of composite parts to create a design (e.g. composite one produces protein one, which prevents

composite two producing protein two). Furthermore, the standard has also expanded to allow the

description of experimental data. The standard specifically aims to be machine readable. This is

achieved through many explicit property (predicate) fields and the use of hierarchical controlled

vocabularies (ontologies) [56, 95, 179, 33, 121, 62, 50].

Whilst data standards are required for the automation of genetic design, they are not suffi-

cient. The design information must not only be described in comparable, machine readable, and

standardized formats, but must also be accessible. Designs can be made accessible via the use of

open, centralized, internet repositories. There are several different systems for storing and sharing

data about engineered biological designs, most notable are JBEI-ICE [82] and the iGEM Registry of

Standard Biological Parts (http://parts.igem.org) (for more information see Chapter 2). However,

SynBioHub is the only repository designed to leverage the benefits of SBOL for storing information

about genetic designs [138]. SynBioHub was initially developed as an aggregation facility to unite

information from many different repositories and store clear provenance information together with

genetic design information. However, it has fallen short of this goal, due to complexity of getting

information into the SBOL data format, and the lack of part reuse making depositing parts not

worth the effort [217].

Unfortunately, part reuse and the use of genetic design repositories are bidirectionally linked.

Parts would be easier to reuse if they were stored in a repository, and more parts would be deposited

if they were reused more. However, there are also other barriers to part reuse. The main barriers to

data reuse are low efficacy and low efficiency, i.e. how well data can be used to answer the question

4

posed (usability) and how easy it is to find the data (discoverability). When data is easier to find

and has more complete metadata on which its suitability for answering a research question can be

judged, then data reuse is more common [54, 166, 248, 49, 30, 71]. Thus, increasing metadata,

reducing the effort required to submit parts to repositories, and increasing the ability to search for

parts increases part submission and reuse. In turn, this decreases the time and effort required to

create new genetic designs.

1.2 Contributions

The contributions of this dissertation are all steps towards reducing the effort required to

find and use genetic parts. Some are more direct steps, others less so.

The framework to modularly extend the SynBioHub part repository enables the

customization and extension of SynBioHub functionality. The plugin framework allows users to de-

velop simple servers, in a programming language of their choice, to provide additional functionality

on SynBioHub. Several templates are provided to make the threshold to development as low as

possible. The additional functionality users might add includes: visualizations comparing genetic

part use, sequence views, downloading genetic part information in the form they are most com-

fortable with, or uploading information from whatever format they generally use. The framework

makes the part repository better able to fit into the disparate existing workflows. Additionally, the

extended plugin framework was specifically designed to support enhanced curation of parts and

make finding curated parts easier.

The tools to work with genetic parts in spreadsheets, the Excel-SBOL Converter,

enables researchers to submit and view their part and experimental information in a form that

they are comfortable with. It consists of two Python libraries, one to convert spreadsheets to the

SBOL data standard and one to convert SBOL data objects to spreadsheets. These libraries are

designed so that users unfamiliar or uncomfortable with ontologies and RDF can still submit their

data to SBOL repositories. Thus, the users can work in spreadsheets, which are often already part

of experimental workflows, but still benefit from the curation and search functionality offered by a

5

language such as SBOL.

We performed analysis and curation of data from existing genetic data repositories. This

led to the creation of a list of issues with the genetic data sets and curated genetic data

sets. The data sets are often difficult to search, present information in non-standard ways, or

lack the metadata required to judge the usefulness of the data. The analysis consisted of pulling

data from three existing repositories iGEM (a repository of genetic parts mostly submitted by

high school students and undergraduates), ACS Synthetic Biology (a journal), and Addgene (a

non-profit plasmid repository with an online database of the stored plasmids). The data was then

processed to pull sequences out and annotate them with common sub-sequences. Additionally,

the records were analysed to retrieve and standardize the sequence metadata. The contribution

is three-fold: the semi-curated data sets, information about the data sets, and the elucidation of

challenges to curation. The data sets are each curated to different levels due to the varying levels

of manual curation required. None of the data sets are fully curated as in every case there are

terms which are ambiguous to the point of requiring input from the original author, and there are

gaps in the provenance information. The information about the data sets includes the kinds of

genetic parts often seen, the types of metadata recorded, and some of the most common metadata

values (e.g. most common species). The challenges preventing curation are shown in the difficulty

of generalising a workflow that would enable disparate data sources to be combined into a single

well-curated searchable database. In particular, places where manual curation is required are major

hurdles to the implementation of curation.

A proposed SBOL Data Content Standard was created. This is a list of metadata

properties: their name, description, and any ontologies they should use. Such a standard enables

the conversion of data from other formats and repositories to SBOL in a more standardized manner.

Additionally, it can inform experimental design to ensure any new part libraries are usable in

synthetic biology workflows. The standard can form the basis of new search algorithms, can be

used for in silico modeling, and ensure part data can be evaluated and utilized by others. The

standard was developed based on the analysis mentioned in the previous contribution.

6

An integrated curation workflow is a workflow that utilises curation to enhance genetic

design metadata and reduce the effort required to find, create, and share genetic designs. The

workflow presented illustrates how the plugin framework, spreadsheet tools, and SBOL Data Con-

tent Standard can be brought together to create a more automated and efficient synthetic biology

workflow.

1.3 Dissertation Outline

This dissertation is composed of seven themed chapters.

Chapter 2 provides the background information on data reuse methodologies, and the tech-

nologies used to support tool development. This includes: genetic parts and circuits, standards

(FASTA, Genbank, SBOL), repositories (WormBase, UniProt, GenBank, JBEI-ICE, SynBioHub),

metadata in databases, automated curation, and APIs.

Chapter 3 focuses on the development of the plugin framework. It explains the plugin specifi-

cation for submit, visualisation and download Plugins. Then, it explains the development of plugin

templates to make the development and testing of plugins easier. Next, a further set of plugins is

proposed to extend the plugin framework based on user feedback and tooling wishes. Subsequently,

the specific implementations of plugins that currently exist are described. Finally, a further work

section indicates the next steps in plugin framework development. The framework discussed here

is also used in Chapter 6 for an integrated curation structure.

Chapter 4 describes the principles behind the Excel-SBOL Converter. It considers the gener-

alization of spreadsheets by going through the different iterations of Excel-to-SBOL and indicating

the challenges that prompted further development. This is supported by a case study using Excel-

to-SBOL together with experimental data. The development of SBOL-to-Excel is then discussed

together with a case study that was used to develop the converter. Next, the integration of the

converter into the plugin framework (discussed in Chapter 3) is shown. Finally further work is

discussed. The converter is used in the post-hoc curation discussed in Chapter 5, and the proposed

integrated curation framework in Chapter 6.

7

Chapter 5 shows a proposed post-hoc curation pipeline and its application to three genetic

part data sets: iGEM, ACS Synthetic Biology, and Addgene. After the initial description of the

post-hoc curation workflow, the three example applications are discussed. Each application explains

how the sequences were extracted, had sub-components annotated, and how metadata about the

sequences was extracted. The results of the sequence and metadata extraction are then discussed

along with the challenges of applying the pipeline to the particular case study. A summary of the

lessons learned is given and this provides the motivation for the work discussed in Chapter 6.

Chapter 6 proposes an integrated curation workflow and its applications to advancing the way

in which data and information is exchanged in synthetic biology. The SBOL Data Content Standard

is proposed to support the realization of the integrated curation workflow. The pieces required for

the proposed workflow are then discussed, including how the plugin framework (Chapter 3) and the

Excel-SBOL Converter (Chapter 4) can be used. Additionally, the chapter highlights the challenges

that must be overcome in order to implement the proposed framework.

Finally, Chapter 7 summarizes the accomplishments that were presented and discusses future

directions for this work including: expanding search capabilities to take advantage of improved

metadata, creating a framework to assess the impact of better metadata on part reuse, making the

development of user interfaces for the tools simpler, implementing the extended plugin framework in

SynBioHub, further expanding the SBOL Data Content Standard, providing more Excel-to-SBOL

templates, creating further libraries for sequence annotation, and further curating the genetic part

information gathered in the post-hoc curation pipeline.

Chapter 2

Background

This chapter provides some background to the material presented in this dissertation. Section

2.1 describes genetic components. Section 2.2 discusses different standards for storing genetic

part information. Section 2.3 provides background on different genetic data storage repositories.

Section 2.4 explains the role of metadata in repositories. Section 2.5 gives some background on

automated curation. Section 2.6 discusses search principles. Finally, Section 2.7 provides a section

on terminology equivalence.

2.1 Genetic Components

Synthetic biology aims to implement engineering principles of standardization, abstraction,

and modularity to genetic engineering. To do so, the idea of genetic components was developed.

Components may be used by themselves or combined to create a more complex component with

sub-components. Common components are based on the central dogma of biology “DNA to RNA to

Protein”, and the main sequence features required for transcription of DNA to RNA, and translation

of RNA to protein. An example of these features is shown in Figure 2.1. Key sequence features

are: operators, promoters, ribosome binding sites, coding sequences and terminators.

An operator is the element of an operon to which activators or repressors bind thereby effecting

translation of genes in that operon. A promoter is the region of DNA to which RNA polymerase

binds, to begin transcription. A ribosome binding site is the region in the 5’ un-transcribed region

that pairs with the 16S ribosomal RNA during the start of translation. A coding sequence is

9

a region which contains the information about the amino acid sequence in the final protein. A

terminator is a region of sequence that causes RNA polymerase to terminate transcription.

Figure 2.1: Central Dogma of Biology. DNA is transcribed to RNA and translated to protein.
The figure also shows some key annotations used in synthetic biology. The blue () and pink ()
symbols are the SBOL Visual symbols for operators. An operator is the element of an operon
to which activators or repressors bind thereby effecting translation of genes in that operon. The
promoter () is the region of DNA to which RNA polymerase binds, to begin transcription. The
ribosome binding site () is the region in the 5’ un-transcribed region that pairs with the 16S
ribosomal RNA during the start of translation. The coding sequence () is a region which contains
the information about the amino acid sequence in the final protein. Finally, the terminator () is
a region of sequence that causes RNA polymerase to terminate transcription.

Genetic components can be modeled as circuits [154, 34]. This kind of abstraction allows

techniques from electrical design automation to be used in genetic circuit design. To allow this

modeling, circuits are abstracted into boolean (i.e. True/False) digital logic gates (AND, OR,

NOR, NAND, NOT) the building blocks of electrical circuits and computers. These circuits may

be implemented in several different ways including: DNA binding proteins (Figure 2.2), epigenetic

binding proteins (Figure 2.3), recombinases (Figure 2.4), CRISPR-based (Figure 2.5), and RNA-

IN/OUT (Figure 2.6).

10

Figure 2.2: OR Gate implemented via DNA Binding Proteins. OR gates are gates that provide an
output if one, or both of the inputs is present. As depecited in A-D the or gate provides the output
protein only if one or both of the activators are present. This is achieved by having activator
proteins bind to operator sites. If the activator is present then RNA polymerase can bind and
mRNA can be transcribed. Otherwise, no transcript is made and thus no protein will be created.

Figure 2.3: Epigenetic NOT gate. NOT gates invert the input given. Epigenetic gates work by
changing the methylation state of the DNA. A: If methylation is present then the zinc finger protein
cannot bind so RNA polymerase is not recruited. B: If the methylation is not present then the zinc
finger protein (with RNA polymerase recruitment domain) can bind to the sequence and recruit
the RNA polymerase. Then transcription and translation can occur and the output protein is
produced.

11

Figure 2.4: Recombinase based AND gate. Recombinase gates work by changing sequence parts
from one DNA strand to the other. In this example terminators are inactivated by transfering them
from one strand to the other. Thus, the output is only produced if both invertases are present.

12

Figure 2.5: CRISPR based gates. Panel A: CRIPSRi based NOR gate. Sterhic hinderence means
RNA polymerase can only bind if neither of the guide RNAs (sgRNA) are present, otherwise the
dCas9 blocks the RNA polymerase from binding. Panel B: CRISPRa based OR gate. Here dCas9
has an RNA polymerase recruiting domain fused to it. Thus when it is present RNA polymerase is
recruited and transcription occurs. Thus if either, or both, of the guide RNAs (sgRNA) are present
the output protein will be produced.

13

Figure 2.6: NOT Gate implemented via the RNA IN/OUT system. NOT gates take a single
input and provide the opposite output. Here the input is RNA-out. If the RNA-OUT mRNA
is present then the CDS is not transcribed and thus no protein is produced. In prokaryotes rho
dependent termination occurs when the ribosome encounters the rho protein at the rho utilization
site (RUT), if this is blocked then termination does not occur and read through to the CDS occurs.
Panel A: RNA-OUT transcript is not present and the protein of interest is produced. A.1 The
transcript is initiated. The RNA polymerase moves along the DNA strand producing the mRNA
transcript. A.2 Whilst transcription continues a ribosome binds to the ribosome binding site of
the transcript. A.3 As transcription of the tna leader peptide (TnaC) occurs, the last 12 Tna
peptide residues lead to exposure of the tryptophan site in the ribosome. If tryptophan binds to
the ribosomal tryptophan site then ribosome release is inhibited and the ribosome stalls blocking
the RUT site. A.4 If the RUT site is blocked then the rho protein cannot bind, and thus cannot
terminate the RNA polymerase transcription. The CDS is transcribed and translated into protein.
Panel B: RNA-OUT mRNA is produced and so the CDS region is not transcribed and no protein
is produced. B.1 The transcript is initiated. The RNA polymerase moves along the DNA strand
producing the mRNA transcript. B.2 RNA-OUT mRNA binds to the complimentary RNA-IN site
in the produced transcript. The binding of RNA-OUT blocks the ribosome binding site. Thus the
ribosome cannot bind. This leaves the RUT site free, so the Rho protein can bind. B.3 The rho
protein moves along the transcript and uses its helicase activity to unwind the mRNA transcript
from the DNA. This terminates transcription. B.4 As the transcription was terminated the CDS
was not transcribed and cannot be translated.

14

2.2 Standards

Standards are integral to the success of any engineering field as standards make data findable,

accessible, interoperable, and reproducible data (FAIR data) [177, 229]. Standards were developed

to enable tools and workflows to be developed around genetic part data storage and genetic circuit

design. This section describes three standards for storing genetic designs and associated data:

FASTA, GenBank, and SBOL (Figure 2.7).

The FASTA file format was originally an ad hoc format developed for a tool suite [167].

It has a single ‘>’ to start the definition line which contains a unique sequence identifier/name,

optional information about the source organism, and a title containing a brief description of the

sequence [152]. The next line is the string of letters that comprise the sequence. There are no

annotations for sub-components, and it is a plain text format.

GenBank is a format developed for use in the NCBI GenBank database [20]. However, due

to the lack of documentation it is supported differently by different software making it more ad

hoc. The closest to a definition of the format is the example file (https://www.ncbi.nlm.nih.

gov/Sitemap/samplerecord.html) which shows the fields found in GenBank. It includes more

annotation properties including referencing publications than FASTA. Additionally, it provides the

ability to annotate sequence features. However, the terms used for annotations are free text. Thus

a ribosome binding site may be called a ribosome entry site despite the function being the same.

The Synthetic Biology Open Language (SBOL) is an open community based standard

for sharing genetic design information [137]. One of the major improvements that SBOL pro-

vides is the use of ontologies. Ontologies are controlled hierarchical vocabularies. They provide

precise definitions of terms, and provide less specific parent, and more specific child terms (e.g.

Enterobacteriacaea is the parent of Escherichia which is the parent of E. coli). Ontologies are

generally machine readable and their use prevents multiple variations of the same term. SBOL

uses ontologies such as the Dublin Core [227] and the sequence ontology [62]. Apart from the use

of ontologies, SBOL also allows clear part sub-part relationships to be defined. Later versions,

https://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html
https://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html

15

Figure 2.7: Variation in genetic part data standards. Courtesy of [137]. FASTA was an ad hoc data
format that allowed no annotations to the sequence. GenBank allowed annotations but only within
the file. SBOL v1 allowed annotations of parts as sub-parts of other sequences and incorporated
ontologies to standardized terms. SBOL v2 also allowed interactions between parts to be described.
SBOL v3 condensed and simplified SBOL v2 based on feedback from experimental and industrial
users.

16

also include interactions between parts, and the ability to link to other kinds of data. SBOL ob-

jects work in a similar way to programming objects where a class can be derived from another

class type and inherits all its properties. For example, the TopLevel class is used to derive the

Sequence, ComponentDefinition, Activity, and CombinatorialDerivation classes (for more see the

SBOL specification: https://sbolstandard.org/docs/SBOL2.3.0.pdf). This means that each

of these classes requires a URI to define it, may have an optional persistentIdentity, displayId, ver-

sion, wasDerivedFrom, name, description, and annotation. Additional properties can be added to

specific classes. For example a Sequence object must also have elements (the nucleic acid or amino

acid sequence) and an encoding property (defines if it is DNA, RNA, protein, or a small molecule).

Similarly, ComponentDefinitions must have a types property to define the kind of component. It

may also have roles (like promoter), link to a sequence or sub-components, and have sequence

annotations and constraints.

2.3 Repositories

As part of the engineering principles that synthetic biology embraces it aims to promote the

reuse of genetic components by other researchers. The researchers search for components to use in

a synthetic biology database, and in turn submit their new findings or component creations into

the database. Examples of databases used are: WormBase, UniProt, GenBank, JBEI-ICE, and

SynBioHub.

WormBase is a data repository for Nematodes (with an inital focus on C. elegans) [84].

It includes genetic annotations with annotations from several ontologies: Gene Ontology [212],

Anatomy Ontology [125], Human Disease Ontology [187], Life Stage Ontology, and Phenotype

Ontology [185]. It is focused on the existing biology of Nematodes and not on synthetic biology.

UniProt is a protein repository [47, 48]. It is particularly good at recording provenance in-

formation and cross-linking as human and machine curated sources are added to most properties.

Additionally, it cross links with the Protein Data Bank (PDB) [23], European Molecular Biol-

ogy Laboratory Nucelotide Sequence Database [10], GenBank [20], DNA Data Bank of Japan

https://sbolstandard.org/docs/SBOL2.3.0.pdf

17

(DDBJ) [134], and Protein Information Resource (PIR) [236]. It also has a good mix between

ontology based annotations and free text, and a search interface that makes use of faceted searching.

The BioModels Database is a repository of mathematical models of biological systems [128].

It supports the FAIR data standard and offers curation services. The website says “Before being

publicly available in the BioModels curated section, a model passes through a stringent curation

pipeline”. The repository uses curation, minimum information standards (MIRIAM the minimum

information Required in Annotation of Models [160]), cross-linking with other databases, and on-

tological annotation (Gene Ontology [212], Systems Biology Ontology [99], and ChEBI [56]). It is

an easy to use database of biological models.

The NCBI GenBank database stores nucleotide sequences [21]. It has strong filtering ca-

pabilities by species, source, and molecule type. It is organized based on nucleotide sequences

(generally on a gene level) rather than the function of the sequence. Additionally, the experimental

annotations are limited (no temperature, cloning methods etc).

The Joint BioEnergy Institute Inventory of Composable Elements (JBEI-ICEs) is

an open source repository for biological parts [82]. It requires an account to access, so it is less easy

to browse than the other databases mentioned. It does not make use of ontologies and has limited

filtering (based on type and biosafety level). It does allow the storage of experimental data [218].

SynBioHub is an open source repository based on the SBOL data standard [138]. It uses

ontologies like the Sequence Ontology. Filtering is possible via the advanced search interface, but

not via the normal search interface. Filtering can occur based on the provenance information, the

object type or the specific predicate names. Whilst it has the ability to store experimental data

and information, there are currently few examples of such data being stored.

2.4 Metadata in Databases

Library Sciences is the field that develops and applies methods and tools, to the collection,

organization, preservation, and dissemination of information. This can be both in the form of the

traditional library or more contemporary data repositories. Some key principles of library science

18

influence the work proposed in this dissertation.

2.4.1 Library Science Principles

In 1931 S. R. Ranganathan proposed the five laws of library science [176]:

(1) Books are for use

(2) Every reader his or her book

(3) Every book its reader

(4) Save the time of the reader

(5) A library is a growing organism

These five laws have been adapted to many different contexts including: knowledge curation [78],

the internet [159], the variety of media mediums [192], and knowledge systems [188].

Similarly, these principles can be used to guide synthetic biology repositories. Parts are for

use: Users should be able to access parts, both information about them and to use in experiments.

Every user his or her part: A wide collection of parts should be stored with the information

necessary for them to be used by different users. This means non-model organisms should be

considered, and what part information experimentalists as well as modelers need. Every part

its user: All parts deserve to be stored even if they may be very niche. Save the time of the

user: Users should be able to quickly and easily find the parts and part information they need. A

repository is a growing organism: A repository is a dynamic storage solution. It should not

be static, and the repository should be updated to store new types of information, support new

formats, and expand storage methods as time progresses.

2.4.2 Minimum Information Standards

To enact the principles of library sciences metadata is used. Metadata is “information about

information”. It provides information about the information in a record, for example the author,

19

publication date, number of pages, and language, of a book. Metadata has been shown to be

important to data reuse [54, 210]. Many researchers report the inability to understand data set

content and/or the quality of the data due to a lack of metadata and that this impairs their ability

to judge whether it is useful for analysis [54, 210, 31]. “Good digital collections should contain

metadata in the descriptions of the stored data” is the second principle provided in ‘A Framework

of Guidance for Building Good Digital Collections’ as published by the National Information Stan-

dards organization [79]. Whilst there are alternative ways to find data when metadata is poor, such

as by literature searches [247], metadata makes data more discoverable as specified by the FAIR

principles [177, 229].

The kind of metadata provided can be standardized through the use of minimum infor-

mation standards. Minimum information standards generally have two aspects: what metadata

fields must be present, and how the metadata should be stored (the data format). Minimum

information standards are used in other areas. An overview of minimum information standards

was given in 2008 [207]. Some current standards are: MIABE (Minimum Information About a

Bioactive Entity) [163], MIGS (Minimum information about a genome sequence) [67], MIAFGE

(minimum information associated with a functional genomics experiment) [201], MIRIAM (min-

imum information required in the annotation of models) [160], and STRENDA (standards for

reporting enzymology data) [216].

2.5 Automated Curation

Automated integrity checks help curation. The curation of data includes the use of metadata.

To help increase the use of metadata checklists or templates for different experiment types have

been suggested [114, 169, 113, 196]. Currently, no metadata templates cover all of the data stored

in SynBioHub, the one that came closest was the CEDAR Genetic Construct metadata [146].

Comparison to templates can highlight missing information. There are many different data

validation technologies (document content descriptions) that can be implemented depending on the

format of the SBOL: XML Schema [32], JSON Schema [61], or ShEx/SHACL for RDF [171, 200,

20

214, 111]. Many of these schemas have associated schema creation and schema validation libraries

in several coding languages including Python, Java, Scala, and JavaScript [45, 90, 164, 6, 197].

Curation is important. The more complete data records that are submitted, the more reusable

the data and the more useful the database becomes [91]. The idea of having submitters curate

their own data rather than having a special curator is becoming increasingly popular [140, 242, 89].

However, to do this, automated integrity checks, citation mechanisms, and editorial oversight is

suggested [69].

2.6 Search

To be able to find and reuse genetic parts good search algorithms are required. There

are different ways of improving search algorithms including: tailoring to the mode of searching,

providing ranked results, providing result filtering, and providing query expansion and optimization

suggestions.

There are different ‘modes’ of searching. Often searches are simple phrases, which could have

multiple different intentions. For example, “GFP” could have several different expected results:

• “BBa E0040” the CDS which produces GFP

• All components which include BBa E0040

• Any literature about GFP use in different organisms

• Any reporter proteins

The nature of the results that are expected to depend on the users background (do they

know the term reporter protein or only the concept of using GFP in such a way) and the users

intention (e.g. is it an exploratory search or a page-find search). Previous work has indicated that

users have different types of search which may vary based on device they are using to search, for

example searches performed on phones are more likely to be looking for nearby amenities than

desktop searches [80]. The way ‘modes’ of search are classified varies. They can be split into

21

content-search vs target-search (named-page finding) [245], split along 4 axis: ambiguity, authority

sensitivity, temporal sensitivity, and spatial sensitivity [153], or split by navigational search (finding

a document) vs research search (finding information) [80]. The use of context to improve query

results is a current practice for major search engines such as Google [202, 83] and an active area

of research [3, 38, 37, 11]. It does however, raise the issues of privacy, polarization, and search

bubbles [250, 175].

Faceted search and result ranking can help reduce ‘information overload’. Faceted search is

the presentation of search results along with different ‘facets’ of the data to allow filtering of the

results. It is widely used by companies like Amazon, eBay, Google (image search for example), and

even biological databases (as shown above) [19, 226]. Information overload occurs when too many

results are returned by a broad or exploratory query resulting in a lot of time and effort being

required to find the desired information. The time spent can be addressed by ranking or by faceted

search. Ranking is effective when assumptions used by ranking are aligned with user preferences,

but often does not perform well for exploratory queries [103]. Faceted search to allow filtering of

results is a form of query scoping (query rewriting) where a search like: “GFP protein” becomes

GFP refined by the facet value ComponentType:Protein, such rewriting of the query can be done

by leveraging SBOL elements [137, 7]. Implementation of faceted search query scoping could solve

a current issue with SynBioHub search where an exact part id does not return the part in the top

results (for example the search for “BBa J70011” only returns the part as the 14th result when a

regular search is performed and advanced search is required to make it the top result).

Query expansion can be used to produce more matching results. Query expansion is the

practice of searching not only for ‘documents’ that contain the exact keywords provided by the

search but also returning documents that contain similar keywords. For SynBioHub an example

might be searching for ribosome entry site and seeing results returned for the query string ribosome

binding site too. On popular search engines, query expansion often takes the form of suggestions

starting with “Did you mean. . . ” or “Few results found for x try y instead”. Query expansion can

be carried out using synonyms or hierarchically related terms provided by an ontology of faceted

22

terms [3, 226, 7, 17]. Query expansion could be implemented in SynBioHub to present similar more

‘popular’ components to users.

Most search improvements (ranking, facet filtering, expansion) rely on a combination of

improved search algorithms and good metadata for the records that are being searched over.

2.7 Terminology Equivalence

The nature of this work is interdisciplinary. This poses a problem when terminology is

different across the disciplines. The terminology used here was chosen as most accessible across

fields. However, there is an equivalence in terms that is outlined below.

The SBOL descriptions of sequences are digital twins of the biological reality. Each SBOL

sequence has a unique identifier but can also store other identifiers such GenBank or Addgene. This

allows mapping between the SynBioHub database and other databases which in turn allows inter-

operability and helps overcome the problem of data silos (data bases that are not interconnected).

The plugin framework discussed in Chapter 3 uses microservices. Each plugin is a microser-

vice and the microservices enrich and extend the functionality of the SynBioHub platform beyond

the core Graph Database.

Post-hoc curation in Chapter 5 focuses on improving data quality during the Extract-

Transform-Load (ETL) data pipeline. It discusses extracting data and adding metadata to older

formats such as PDFs which are legacy formats. This is done in order to work towards linked open

data (a version of which is proposed in Chapter 6).

Chapter 3

The Extension of SynBioHub via a Plugin Interface

SynBioHub is a repository for synthetic genetic designs represented in SBOL. Despite the

many advantages to machine readable SBOL, the interface for interacting with stored designs is still

limited. Going to and from SBOL constructs is difficult and requires an in depth understanding

of the SBOL language and XML or a programming language, such as Python or Java to use

packages like pySBOL [13] and libSBOLj [244] to create the XML. Additionally, there are limited

visualizations or ways to interact with the data once it is stored in SynBioHub. Whilst these

problems could be individually tackled by SynBioHub developers, the many different workflows

supported by SynBioHub make it difficult to keep up with the variety of user needs. As such,

the plugin interface has been developed. The use of plugins allows third party developers to

write simple modular extensions to be used with SynBioHub. A single plugin can be used across

multiple instances of SynBioHub and be written in any language that supports API (application

programming interface) creation.

APIs are a set of defined rules that explain how servers can communicate with each other. A

client server sends an API call to a web server. If the request is valid, the API calls a programme

or carries out an action. The response of this action is returned via the API to the client. Open

APIs are APIs that are published on the internet and can be accessed and shared freely without

being bound to any individual company or network. One of the most common API architectures is

REST (Representational State Transfer). It is a set of principles, not a standard. The principles are:

uniform interface, client-server decoupling, statelessness, cacheability, layered system architecture,

24

and optionally: code on demand. RESTful APIs were chosen to implement the plugin framework

as they can be written in many different programming languages, can create stand alone servers

that can be hosted anywhere, and require few additional computer science concepts to understand

and use.

The development of the plugin framework includes: plugin API specification (Section 3.1),

plugin templates (Section 3.2), further plugins (Section 3.3), example plugins (Section 3.4), and

further work (Section 3.5). Note that this is not user documentation, for that please see the GitHub

repositories in Appendix B.

3.1 Plugin Specification

The work presented in this section was originally published as [131]. SynBioHub was ex-

tended with a plugin engine. The plugin interface is based on a microservices design specification.

Each plugin is deployed as a web service that is accessible by SynBioHub. Plugins are added to

SynBioHub via the administrative interface. The plugin server can be run anywhere as long as the

base URL is accessible to the SynBioHub server. To add a plugin, the URL and plugin name are

put in the interface as shown in Figure 3.1. SynBioHub can then call the different plugin endpoints

to interact with them.

The SynBioHub instance interacts with the plugins via a predefined API specification that is

broadly the same across all kinds of plugins. Once an appropriate action (e.g. a page is rendered) is

taken on SynBioHub, the plugin is engaged. The steps for this process are illustrated in Figure 3.2.

First, the status of the plugin is checked to ensure it is ready to serve requests. Second, the plugin

evaluates its ability to run by comparing the data type received to the data types it can handle. If

the evaluation is positive, SynBioHub sends an HTTPS POST request to the plugin run endpoint.

Finally, SynBioHub waits for a response and asynchronously reports it to the user.

Whilst the three endpoints of the plugin API are the same, the information sent to the

different endpoints varies depending on the type of plugin. Currently, there are three types of

plugins available:

25

Figure 3.1: Plugin Administrative Interface. Adding a plugin to SynBioHub requires registering
the name and URL in the administrative interface. A plugin added here will show up on the
appropriate page. Only administrative users have access to this page.

26

Figure 3.2: Flow diagram illustrating the different steps of communication between the plugin
server and SynBioHub. Orange signifies messages from SynBioHub to the Plugin, and blue from
the Plugin to SynBioHub. First, SynBioHub checks the status of the plugin. If the plugin is
running, the type of object is sent to the plugin. If the plugin responds that it can handle the
object type, the full data is sent to the plugin to run and return results to SynBioHub.

27

• Submit: Submit plugins are available to use from the submit endpoint (Figure 3.3). They

work by taking in the file that is uploaded in the submit and processing it to return SBOL

to the SynBioHub endpoint.

• Visual: Visual plugins are available on all object pages, for example pages for Compo-

nentDefinitions, Sequences, Activities, etc (Figure 3.4). Visual plugins return HTML to be

displayed on the page.

• Download: Download plugins are available on all ‘endpoint’ pages, for example pages for

Components, Sequences, Activities, etc (Figure 3.5). Download plugins return SBOL data

that has been processed, generally into a different format, which is then downloaded by the

user.

3.1.1 Submit

Submit plugins were designed to allow multiple files to be sent to the plugin at once includ-

ing some ‘helper’ files. The plugins operate on entire submissions, rather than individual SBOL

constructs. When a user submits something to SynBioHub, they can select a plugin to handle that

submission. A manifest for the submission is prepared, describing each file in the submission.

The status endpoint (Algorithm 3.1) simply allows get requests and returns a status of

200 and a message that the plugin is up and running. If an error is received when trying to access

the plugin, then SynBioHub will not display the particular submit plugin as an option for the user

to select. The endpoint is designed to be the simplest possible check that the plugin is up and

running.

The evaluate endpoint (Algorithm 3.1) is designed to allow the plugin to determine which

files are necessary and which can be converted. If the evaluate endpoint responds negatively

to a file, then SynBioHub falls back to the default submission handler. The evaluate endpoint

was designed so that in future several different submit plugins might be run dynamically. This

requires a submission to be sent to multiple files and each plugin returning a list of files it could

28

Figure 3.3: SynBioHub Submit Interface. This is how new genetic parts are uploaded to SynBioHub.
The drop down menu can be used to select submit plugins. There are two plugins: Snapgene and
Excel2SBOL in the example.

29

Figure 3.4: Part of a SynBioHub View Endpoint. It shows three visualization plugins. The Sequence
Visualisation Plugin is expanded whilst the other two are collapsed.

30

Figure 3.5: Download plugin options. The drop down shows the download plugins available for
this Component page.

31

Algorithm 3.1: Submit Plugin API

STATUS Endpoint
SynBioHub: GET Request

Plugin: Response
200 and up and running message

EVALUATE Endpoint
SynBioHub: POST Request
{‘manifest’: {‘files’: [List of dictionaries (one for every file)]}}
Each file dictionary has the keys:

• ‘url’: the single-use URL for the file submitted

• ‘filename’: the encrypted file name (with correct extension)

• ‘type’: the mime type of the file

Plugin: Response Data
{‘manifest’:[Dictionary for each file]}
Each dictionary has the keys:

• ‘filename’: the encrypted file name (with correct extension) that matches the
original filename sent in the manifest from synbiohub

• ‘requirement’: an integer 0-2 which indicates whether or not the file can be
used. 2 means the file will be converted to SBOL, 1 the file will be used to
convert other files to SBOL, 0 the file cannot be handled/is not useful

RUN Endpoint
SynBioHub: POST Request
{‘manifest’: {‘files’: [List of dictionaries (one for every file)]}}
Each dictionary has the keys:

• ‘url’: the single-use URL for the file submitted

• ‘filename’: the encrypted file name (with correct extension)

• ‘type’: the mime type of the file

• ‘instanceUrl’: the top-level URL of the synbiohub instance

Plugin: Response Data
A zip file which contains the generated SBOL files and a file called manifest.json
which contains a JSON response manifest. The JSON takes the form:
{‘results’:[List of dictionaries (one for every file)]}

Each dictionary has the keys:

• ‘filename’: name of the file within the zip file

• ‘sources’ a list of filenames received from SynBioHub that were used to gen-
erate the file

32

handle. SynBioHub would then send the files to different plugins in the most efficient manner.

Files submitted may be ‘convertable’ or necessary for conversion. The additional ‘informational’

files might include a set of parameters for the plugin to use in conversion. This is a way to pass

parameters to a plugin without providing a user interface, which is more difficult to create and

maintain for plugin developers. The information sent to the evaluate endpoint about each different

file is the URL, the encrypted file name (with the correct extension), and the MIME (Multipurpose

Internet Mail Extension) type of the file. The URL is given so that the full file may be read to

determine whether or not conversion can be carried out. A URL is given rather than sending the

file as this reduces the size of the data transmission and not all evaluate endpoints will look at file

contents, for some, the file type may be enough. The encrypted file name with the correct extension

is given to allow the appropriate response to be constructed. Additionally, it allows a plugin to

be written that makes decisions based on file extension types (a way of parameterising) or the

combination of the file extension and the MIME type. The MIME type is given as file extensions

are not always agreed on but the MIME type is the official internet protocol for defining the file

type being transferred.

The run endpoint (Algorithm 3.1) is designed to actually call the plugin for conversion.

If the plugin’s run endpoint is not successful, SynBioHub falls back to the default submission

handler. The run endpoint is sent almost the same information as the evaluate endpoint. However,

any files that were considered not useful by the evaluate endpoint are omitted from the dictionary.

Additionally, each file also has the ‘instanceURL’ given. This URL is given so that the plugin

knows which SynBioHub instance is making the request. This information might be necessary if

any searching of the SynBioHub instance is done before submission. For example a more advanced

submission plugin could link all new components to existing sequence instances found in SynBioHub.

3.1.2 Visualization

Visualization plugins were designed to allow additional information to be depicted on SBOL

object pages. An example of this is shown in [87]. They may display text, images, or even interactive

33

windows.

The status endpoint (Algorithm 3.2) simply allows get requests and returns a status of 200

and a message that the plugin is up and running. If an error is received when trying to access the

plugin, then SynBioHub will not contact the evaluate endpoint. It was made as simple as possible

and thus uses the GET request method rather than exchanging any data.

The evaluate endpoint (Algorithm 3.2) of a visualization plugin is again kept as simple as

possible. It receives a single RDF-type (e.g. ‘Activity’, or ‘Component’) and then returns a 200

status if the plugin will accept the type and 4XX (e.g. 404, 415) otherwise. The RDF-type was

chosen as the information as all information will be SBOL and stored as RDF triples. Thus the type

provides the best way to differentiate between objects. If a 200 status is received by SynBioHub,

then the plugin ‘box’ will be shown on the endpoint page, otherwise the ‘box’ will be removed.

The run endpoint (Algorithm 3.2) receives a number of URLs so it can fetch the information

required to create the visualization. Again URLs are sent rather than files as it reduces the size of the

RUN request. The URLs sent are limited to reduce the complexity of the request and maintenance

of the plugin architecture, whilst maintaining the flexibility of the visualization plugins. The

complete SBOL gives the SBOL description of the object, as well as all top-level objects that are

referenced by the original object. This is useful for visualizations which consider child objects,

e.g. the sub-components of an object. The shallow SBOL only provides the information about the

top-level object and its associated child objects and thus is more compact than the complete SBOL.

Fetching this takes less time than fetching the complete SBOL and is the more efficient route if the

complete SBOL is not needed. The GenBank version of a file is provided for ComponentDefinitions.

This is provided as many tools do not yet support SBOL, but rather only support GenBank. Thus,

providing the Genbank URL ensures the visualization plugins can be used to integrate visualizations

from existing workflows. The top-level URL of an object is provided so that, if needed, more

information can be pulled from the object page. This instance URL is needed as the top level

URL will be the same for synbiohub.org and dev.synbiohub.org as these two instances spoof each

other. The size of the object is a number that indicates the number of triples in the triple store

34

Algorithm 3.2: Visualization Plugin API

STATUS Endpoint
SynBioHub: GET Request

Plugin: Response
200 and up and running message

EVALUATE Endpoint
SynBioHub: POST Request
{‘type’: RDF-Type of the top-level object}

Plugin: Response Data
200 if the type is acceptable and 4XX status if it isn’t

RUN Endpoint
SynBioHub: POST Request
{‘complete sbol’: URL, ‘shallow sbol’: URL, ‘genbank’: URL, ‘top level’: URL,
‘instanceUrl’: URL, ‘size’: number, ‘type’: RDF-type}

The meaning of the different keys is explained below:
• ‘complete sbol’: The single-use URL for the complete SBOL of the object

• ‘shallow sbol’: The single-use URL for a truncated SBOL file of the the object

• ‘genbank’: The single-use URL for the Genbank of the object (Note: This will
lead to a blank website for all RDF-types other than ComponentDefinition)

• ‘top level’: The top-level URL of the SBOL object

• ‘instanceUrl’: The top-level URL of the SynBioHub instance

• ‘size’: A number representing an estimate of the size of the object (the number
of triples about an object)

• ‘type’: The RDF type of the top-level object (this is the same as was sent to
the evaluate endpoint

Plugin: Response Data
HTML that contains the visual to be displayed. It is sent as a text response not a
file attachment.

35

(e.g. Virtuoso) that relate to the object. It is provided so that a plugin can choose to use the

shallow SBOL for large objects and the complete SBOL otherwise. Doing this, allows plugins to

pull additional information as needed for large objects and pull a larger selection of all available

information in the case of small objects. The type of the object is provided as some visualization

plugins may be able to handle multiple different object types but have specific behaviors for different

types.

3.1.3 Download

Download plugins are designed to allow SBOL data to be downloaded in other formats. For

example, the download may be a ZIP file containing multiple files inside, visualizations generated

based on the SBOL object, or other formats such as the Snapgene DNA format.

The status endpoint (Algorithm 3.3) allows get requests and returns a status of 200 and a

message that the plugin is up and running. If an error is received when trying to access the plugin,

then SynBioHub will not contact the evaluate endpoint. This is a simple check to see if the plugin

is up and running.

The evaluate endpoint (Algorithm 3.3) of a download plugin is relatively simple. It receives

a single RDF-type (e.g. ‘Activity’, or ‘ComponentDefinition’) and then returns a 200 status if the

plugin will accept the type and 4XX (e.g. 404, 415) otherwise. If a 200 status is received, the plugin

download button is shown on the endpoint page, otherwise the button is removed. The reasoning

for using the RDF-type is the same as for the visualization evaluate endpoint. Keeping, the two

evaluate endpoints the same between visualization and download also makes it easier for users to

learn to use the second kind of plugin after understanding the first.

The run endpoint (Algorithm 3.3) receives the same information as the visualization end-

point. The reason behind each of the URLs is the same. The use of the same information between

the visualization and download run endpoints means there is less for users to understand when

introduced to the plugin structure. Additionally, it is easier to maintain on the SynBioHub side.

36

Algorithm 3.3: Download Plugin API

STATUS Endpoint
SynBioHub: GET Request

Plugin: Response
200 and up and running message

EVALUATE Endpoint
SynBioHub: POST Request
{‘type’: RDF-Type of the top-level object}

Plugin: Response Data
200 if the type is acceptable and 4XX status if it isn’t

RUN Endpoint
SynBioHub: POST Request
{‘complete sbol’: URL, ‘shallow sbol’: URL, ‘genbank’: URL, ‘top level’: URL,
‘instanceUrl’: URL, ‘size’: number, ‘type’: RDF-type}

The meaning of the different keys is explained below:
• ‘complete sbol’: The single-use URL for the complete SBOL of the object

• ‘shallow sbol’: The single-use URL for a truncated SBOL file of the the object

• ‘genbank’: The single-use URL for the Genbank of the object (Note: This will
lead to a blank website for all RDF-types other than ComponentDefinition)

• ‘top level’: The top-level URL of the SBOL object

• ‘instanceUrl’: The top-level URL of the SynBioHub instance

• ‘size’: A number representing an estimate of the size of the object (the number
of triples about an object)

• ‘type’: The RDF type of the top-level object (this is the same as was sent to
the evaluate endpoint

Plugin: Response Data
An HTTP response that contains the file to be downloaded as an attachment to the
request.

37

3.2 Plugin Templates

Plugin templates were created to facilitate plugin development. These templates serve

three roles: 1) to provide the most basic example of the different kinds of plugin, 2) to make

SynBioHub testing easier, and 3) to provide a simple example for new developers to edit to enhance

their understanding of plugins, thus lowering the bar for plugin development. The templates are

stored as GitHub repository templates to allow them to be easily cloned. The templates not only

contain code but also a set of GitHub Actions which automate commonly performed operations

associated with plugin development. Currently there are 6 templates, three python templates

(submit, visualization, and download), and three JavaScript templates (submit, visualization, and

download). More detail is given about the templates below. Additionally, for the testing of plugins

a standard set of API calls was created (https://github.com/SynBioHub/Postman). This can be

used together with a tool such as Postman (https://www.postman.com/) to test plugins without

needing to understand how to run a personal SynBioHub. This makes plugin development more

modular and testing simpler.

3.2.1 Templates and Docker

All three types of plugins are API servers. Thus, they can stand as independent applications

that are run via the API tools provided by different languages (e.g. Python’s Flask and JavaScript’s

Node). However, this may require installing Python or JavaScript and appropriate tools on the

server on which plugins are to be run. This can be difficult with versioning of the language, or

clashes in package dependencies. Thus, Docker containers were created for each plugin to make it

as easy as possible for plugins to be used by inexperienced programmers. This allows all plugins

to be installed and run by installing a Docker image. To make this easier the templates provide

examples of the necessary Dockerfiles and provide GitHub Actions that can automatically create a

Docker image and push it to DockerHub for the repository.

For Python a standard Docker base image is used (synbiohub/docker-base-python:snapshot)

https://github.com/SynBioHub/Postman
https://www.postman.com/

38

which has Python3 installed, as well as the Flask and Waitress package. The 5000 port is exposed

(which is the standard Flask port), all requirements from the requirements.txt file are installed,

and the Flask application called app.py is run.

The JavaScript DockerFile is based on the node:12 Docker image. It copies in all required

packages from files named package*.json (e.g. package.json and package-lock.json). Then it installs

all the listed dependencies required for production (not the development dependencies). It copies

in all files from the folder it is in, exposes port 5000 (this is used to make it more similar to the

Python version which has a default), and finally runs the node app found in app.js.

The use of Docker images also allows multiple plugins to be run together via Docker compose

files. This gives developers the opportunity to run plugins alongside a local SynBioHub instance

without setting a domain name for every plugin. It is still possible to run plugins as stand alone

images if that works better with debugging infrastructure.

3.2.2 Python Templates

All python templates use the same structure to make it easier for developers to use each of

the different kinds of plugin. Each template contains a folder of python test files, a License file, a

ReadMe file, a Dockerfile, a requirements.txt file, an app.py file and 3 GitHub actions (automatically

run tasks for software development workflows (https://github.com/features/actions)).

The License file indicates that the plugin is open source. The ReadMe file provides back-

ground information. The Dockerfile is used together with the requirements.txt file to create the

Docker image. The app.py file contains the template Flask application. There are three GitHub

Actions, all three run when changes are pushed to the main branch:

• release: to automatically create a Docker image with the repository name and push it to

Docker Hub.

• linting: this checks the Python code follows the flake8 format. Doing so provides additional

standardization between plugins.

https://github.com/features/actions

39

• testing: This runs all the pytest modules found in the test folder. It checks the plugin has

a status, evaluate, and run endpoint.

Whilst many things are standardized across the three types of plugin, the actual Flask tem-

plates are necessarily slightly different.

3.2.2.1 Submit

The submit test plugin has a status endpoint that only allows GET requests and returns the

message “The Submit Test Plugin Flask Server is up and running”. The evaluate endpoint iterates

over each of the file entries found in the manifest it receives and creates a response to be returned.

This endpoint is easy to edit as the developer simply has to ensure the accepted types are listed

in the acceptable types dictionary and the additionally useful types are listed in the useful types

dictionary. The lines where these two dictionaries are defined are clearly indicated by a demarcation

in the code of “REPLACE THIS SECTION WITH OWN RUN CODE” and “END SECTION ”

For the run endpoint a temporary directory is created. Then, for every file the appropriate manifest

is created and the variable sbolcontent is written out to a file in the temporary directory. After all

the files have been processed, the manifest file is added to the temporary directory, it is zipped and

sent back to SynBioHub. For the example, all files are replaced with a Test.xml file which provides

all the information sent to SynBioHub as the mutable description. The GitHub repository for the

Python Submit template is found at https://github.com/SynBioHub/Plugin-Submit-Test.

3.2.2.2 Visualisation

The visual test plugin has a status endpoint that returns the message “The Visual Test

Plugin Flask Server is up and running”. The evaluate endpoint checks if the RDF-type given is

a type that the plugin can handle. This endpoint is easy to edit as the developer simply has

to ensure the accepted types are listed in the accepted types dictionary. The lines where these

two dictionaries are defined are clearly indicated by a demarcation in the code of “REPLACE

THIS SECTION WITH OWN RUN CODE” and “END SECTION ” For the run endpoint, HTML

https://github.com/SynBioHub/Plugin-Submit-Test

40

is created and returned based on the input URLs. For the template plugin, the URL returns

a message that the plugin has run successfully and the data sent in the request is as shown in

Figure 3.6. The Github repository for the Python visualization template is found at https://

github.com/SynBioHub/Plugin-Visual-Test. Note there is also a visual-serve-test repository

at https://github.com/SynBioHub/Plugin-Visual-Serve-Test. This repository is the same as

the basic repository, however, it has the code to allow images to be returned in the HTML.

Figure 3.6: Visual template. A: The template HTML response. B: Specific example of the response.
Note how each of the REPLACE found in the template has been replaced with specific values. These
values are the values that were sent in the API call the the plugin. Thus, this plugin can be used
to check that the API call is happening as expected.

3.2.2.3 Download

The download test plugin has a status endpoint that returns the message “The Visual Test

Plugin Flask Server is up and running”. The evaluate endpoint checks if the RDF-type given is

https://github.com/SynBioHub/Plugin-Visual-Test
https://github.com/SynBioHub/Plugin-Visual-Test
https://github.com/SynBioHub/Plugin-Visual-Serve-Test

41

a type that the plugin can handle. This endpoint is easy to edit as the developer simply has to

ensure the accepted types are listed in the accepted types dictionary. The lines where these two

dictionaries are defined are clearly indicated by a demarcation in the code of “REPLACE THIS

SECTION WITH OWN RUN CODE” and “END SECTION ” For the run endpoint, a temporary

directory is created. The file with the name stored in the variable ‘download file name’ is sent back

to SynBioHub as an attachment. For the download template, the file returned is an HTML file that

contains the information sent to the run endpoint as shown in Figure 3.7. The Github repository for

the Python download template is found at https://github.com/SynBioHub/Plugin-Download-

Test.

3.2.3 JavaScript Templates

The javascript template repositories all contain automatic actions to push docker images on a

pull request. The docker image will be pushed to “synbiohub/lowercase repository name:snapshot”

e.g. synbiohub/plugin-submit-test-js:snapshot. The repositories closely mimic the Python ones

including the use of ‘REPLACE THIS SECTION’ headers. The repositories can be found at:

• Submit: https://github.com/SynBioHub/Plugin-Submit-Test-js

• Visualiation: https://github.com/SynBioHub/Plugin-Visual-Test-js

• Visualisation-serve: https://github.com/SynBioHub/Plugin-Visual-Serve-Test-js

• Download: https://github.com/SynBioHub/Plugin-Download-Test-js

3.3 New Plugin Specifications

Apart from the three original types of plugins (submit, visualization, and download), four

additional types of plugin are proposed: curation, search, index, and link. These plugin types are

proposed to fill gaps in the SynBioHub pipeline that are not addressed by the original three plugin

types: curation to add metadata to SBOL and make the SBOL files more informative, search to

https://github.com/SynBioHub/Plugin-Download-Test
https://github.com/SynBioHub/Plugin-Download-Test
https://github.com/SynBioHub/Plugin-Submit-Test-js
https://github.com/SynBioHub/Plugin-Visual-Test-js
https://github.com/SynBioHub/Plugin-Visual-Serve-Test-js
https://github.com/SynBioHub/Plugin-Download-Test-js

42

Figure 3.7: Download Template. A: The template HTML response. Note the template stored in
the plugin directory has a lot of REPLACE placeholders. B: Specific example of the response. his
is an example of the file returned by the download plugin. It uses the template, shown above, and
replaces the place holders with the information sent in the API call. This can then be used to
verify that the API call is happening as expected.

43

extend the search capabilities, index to provide better search result interfaces and allow temporary

storage of data that has not been integrated into the SBOL standard, and link to make it easier to

communicate with other SBOL tools. These four types of plugins are described below. They have

not been implemented in SynBioHub, but templates have been created to varying extents.

3.3.1 Curation

Curation plugins are designed to improve SBOL via curation. They prompt users to provide

more metadata or additional annotations on existing SBOL objects. These plugins will allow

users to input parameters, return proposed changes, and save the changes the user decides on.

A template for the plugin has been created in the repository: https://github.com/SynBioHub/

Plugin-Curation-Test.

The status endpoint checks that the plugin is up and running before providing the curation

button on the SBOL object page (Algorithm 3.4).

Algorithm 3.4: Curation Plugin API: STATUS

STATUS Endpoint
SynBioHub: GET Request

Plugin: Response
200 and up and running message

The evaluate endpoint checks if the object type can be curated by the plugin (Algo-

rithm 3.5). If it can, then a parameter interface can be returned by the plugin. This is either

HTML to allow users to fill out the required parameters, or a standard formatted JSON to allow

SynBioHub to create an HTML form. This endpoint allows users to provide parameters to use

in the curation process. The ability to send HTML allows fully custom interfaces to be designed

for parameter collection. The alternative of sending JSON ensures that developers with little user

interface development experience can still create curation plugins. Additionally, providing JSON

rather than HTML to SynBioHub gives the opportunity to standardize the layout of the parame-

ters endpoint between forms by using similar style sheets. Note in the case of calling plugins via

https://github.com/SynBioHub/Plugin-Curation-Test
https://github.com/SynBioHub/Plugin-Curation-Test

44

API rather than through SynBioHub the evaluate endpoint could be skipped and the appropriate

parameters sent directly to the RUN endpoint.

The run endpoint receives any parameters that the user entered in the evaluate form (Algo-

rithm 3.6). Curation is then run and an interface can be returned to allow the user to select which

changes to use. The interface is created in much the same way as the evaluate endpoint; allowing

either HTML or the list to create HTML. If no curation interface is required then SynBioHub

passes directly to the SAVE endpoint. This endpoint allows users to provide feedback about the

automatic curation carried out. For example, if sequence annotations were created this endpoint is

how users can decide which sequence annotations to accept.

Finally, the save endpoint takes in any user data entered into the RUN endpoint form

(Algorithm 3.7). The save endpoint uses this data to create the finished SBOL. This SBOL object

is returned to SynBioHub for validation. The validation will check the SBOL is valid as well as the

SBOL scope (this prevents a plugin overwriting a large chunk of SynBioHub data and only allows

it to update a small number of objects). The evaluate parameters are again given to this endpoint

in case the run endpoint had no interaction and the user input to create the SBOL is required at

the save endpoint instead.

3.3.2 Search

Search plugins are designed to provide an intake of search parameters, perform a search, and

return the search output. They should make extending search functionality (like in this work [239])

easier. For both the intake of queries and the output of parameters, a default is provided as well

as allowing users to specify their own HTML intake or results view. This allows multiple different

parameters to be taken in, and results to be displayed as networks or anything else the user might

wish. The search endpoint also provides facetting to display the top choices in results. The

facetting interface is based off of the Elasticsearch (https://www.elastic.co/elasticsearch/)

facet interface to make it compatible with Elasticsearch queries. The default output is based on

the SPARQL JSON output to make it compatible with SPARQL queries. An example template is

https://www.elastic.co/elasticsearch/

45

Algorithm 3.5: Curation Plugin API: EVALUATE

EVALUATE Endpoint
SynBioHub: POST Request
{‘complete sbol’: URL, ‘shallow sbol’: URL, ‘genbank’: URL, ‘top level’: URL,
‘instanceUrl’: URL, ‘size’: number, ‘type’: RDF-type, ‘submit link’:url}

The meaning of the different keys is explained below:
• ‘complete sbol’: The single-use URL for the complete SBOL of the object
• ‘shallow sbol’: The single-use URL for a truncated SBOL file of the the object
• ‘genbank’: The single-use URL for the Genbank of the object (Note: This will

lead to a blank website for all RDF-types other than Component)
• ‘top level’: The top-level URL of the SBOL object
• ‘instanceUrl’: The top-level URL of the SynBioHub instance
• ‘size’: The number of RDF triples about an object
• ‘type’: The RDF type of the top-level object
• ‘submit link’: the SynBioHub link to which the HTML form should submit

Plugin: Response Data
{‘needs interface’: Boolean, ‘own interface’: Boolean, ‘submit link’:url, ‘interface’:
HTML or list}

The meaning of the different keys is explained below:

• ‘needs interface’: Boolean that tells SynBioHub whether any parameters need
to be added. If this is false then all the other keys can be disregarded and can
pass on to the run endpoint

• ‘own interface’: Boolean to tell SynBioHub what kind of interface to expect
back. If True than HTML will be sent as the interface, if False than a list
object indicating an HTML form will be sent back.

• ‘submit link’: The URL for SynBioHub to use if creating a form from the
single use object. It can be the same as the link SynBioHub sent or can point
to another plugin endpoint. It is not used if the own interface variable is set
to True.

• ‘interface’: An HTML object or list to allow parameter entry. If a list, it has
an entry for every variable of the HTML form to be created. Each entry is a
dictionary with the keys:

∗ type: string, HTML-form input type
∗ label: string, heading to give above the input entry
∗ description: string, description/help text to provide to the user
∗ options: list of options, empty list unless the input is a radio or checkbox
∗ default: list, list providing the default selection
∗ restrictions: dictionary providing any further options that can be pro-

vided to HTML forms, e.g. pattern is a key for the regex expression used
to check the input

46

Algorithm 3.6: Curation Plugin API: RUN

RUN Endpoint
SynBioHub: POST Request
{‘complete sbol’: URL, ‘shallow sbol’: URL, ‘genbank’: URL, ‘top level’: URL,
‘instanceUrl’: URL, ‘size’: number, ‘type’: RDF-type, ‘submit link’: URL,
‘eval params’: dictionary}

The meaning of the different keys is explained below:
• ‘complete sbol’: The single-use URL for the complete SBOL of the object
• ‘shallow sbol’: The single-use URL for a truncated SBOL file of the the object
• ‘genbank’: The single-use URL for the Genbank of the object (Note: This will

lead to a blank website for all RDF-types other than Component)
• ‘top level’: The top-level URL of the SBOL object
• ‘instanceUrl’: The top-level URL of the SynBioHub instance
• ‘size’: A number of RDF triples about the object
• ‘type’: The RDF type of the top-level object
• ‘submit link’: the SynBioHub link to which the HTML form should submit
• ‘eval params’: A dictionary providing the output values from the evaluate

form. Is empty if there is no output. Otherwise of the form {‘variable 1’:
[‘text input’], ‘variable 2’: [‘option 1’], ‘variable 3’: [‘option 1’, ‘option 2’]}

Plugin: Response Data
{‘needs interface’: Boolean, ‘own interface’: Boolean, ‘submit link’:url, ‘interface’:
HTML or list}

The meaning of the different keys is explained below:

• ‘needs interface’: Boolean that tells SynBioHub whether any parameters need
to be added. If this is false then all the other keys can be disregarded and can
pass on to the save endpoint

• ‘own interface’: Boolean to tell SynBioHub what kind of interface to expect
back. If True than HTML will be sent as the interface if False than a list
object indicating an HTML form will be sent back.

• ‘submit link’: The URL for SynBioHub to use if creating a form from the
single use object. It can be the same as the link SynBioHub sent or to another
plugin endpoint. Is not used if the own interface variable is set to True.

• ‘interface’: An HTML object or list to allow parameter entry. If a list, it has
an entry for every variable of the HTML form to be created. Each entry is a
dictionary with the keys:

∗ type: string, HTML-form input type
∗ label: string, heading to give above the input entry
∗ description: string, description/help text to provide to the user
∗ options: list of options, empty list unless the input is a radio or checkbox
∗ default: list, list providing the default selection
∗ restrictions: dictionary providing any further options that can be pro-

vided to HTML forms, e.g. pattern is a key for the regex expression used
to check the input

47

Algorithm 3.7: Curation Plugin API: SAVE

SAVE Endpoint
{‘complete sbol’: URL, ‘shallow sbol’: URL, ‘genbank’: URL, ‘top level’: URL,
‘instanceUrl’: URL, ‘size’: number, ‘type’: RDF-type, ‘submit link’: URL,
‘eval params’: dictionary, ‘run params’: dictionary}

The meaning of the different keys is explained below:
• ‘complete sbol’: The single-use URL for the complete SBOL of the object

• ‘shallow sbol’: The single-use URL for a truncated SBOL file of the the object

• ‘genbank’: The single-use URL for the Genbank of the object (Note: This will
lead to a blank website for all RDF-types other than Component)

• ‘top level’: The top-level URL of the SBOL object

• ‘instanceUrl’: The top-level URL of the SynBioHub instance

• ‘size’: A number representing an estimate of the size of the object (the number
of triples about an object)

• ‘type’: The RDF type of the top-level object (this is the same as was sent to
the evaluate endpoint

• ‘eval params’: A dictionary providing the output values from the evaluate
form. Is empty if there is no output. Otherwise of the form {‘variable 1’:
[‘text input’], ‘variable 2’: [‘option 1’], ‘variable 3’: [‘option 1’, ‘option 2’]}

• ‘run params’: A dictionary providing the output values from the run form. Is
empty if there is no output. Otherwise of the form {‘variable 1’: [‘text input’],
‘variable 2’: [‘option 1’], ‘variable 3’: [‘option 1’, ‘option 2’]}

Plugin: Response Data
SBOL is returned (inline not as a file)

48

provided in the repository: https://github.com/SynBioHub/Plugin-Search-Test. Note these

plugins also allow the caching of SPARQL queries to make advanced querying more repeatable and

more accessible to graphical interface users.

The status endpoint checks that the plugin is up and running before providing the search

button on the search home page (Algorithm 3.8).

Algorithm 3.8: SEARCH Plugin API: STATUS

STATUS Endpoint
SynBioHub: GET Request

Plugin: Response
200 and up and running message

The parameters endpoint provides the search interface to SynBioHub (Algorithm 3.9).

Search may be carried out with only a button click, it may require input from the standard search

bar, it may require an HTML form generated by SynBioHub based on the list of parameters sent to

SynBioHub, or it may require the display of the HTML returned to SynBioHub. The different intial

input options are provided to enable a wide range of search plugins to be developed. A simple button

may be used in the case of searches like “top ten genetic components” which requires no input. The

standard search bar may be used with a plugin such as “organism search”. The plugin can take

in “E. coli” and specifically match the term against organism properties. An HTML form may be

used for more complex queries which require multiple parameters, including ones that are not free

text. For example, the advanced search interface could be turned into a plugin via this kind of form.

Finally, an HTML file might be used for complex graphical search input. For example, by allowing

the selection of parameters based off of relationship maps. This endpoint manages to support each

of these possibilities whilst receiving and returning relatively few parameters. Additionally, the

standard HTML forms that can be used to collect search parameters are the same kind as are

used in the proposed curation plugins. This standardization between plugin types helps reduce the

difficulty of developing new plugins and the complexity of implementation in SynBioHub.

The run endpoint receives parameters from the parameters endpoint and returns a search

https://github.com/SynBioHub/Plugin-Search-Test

49

Algorithm 3.9: SEARCH Plugin API: PARAMETERS

PARAMTERS Endpoint
SynBioHub: POST Request
{‘instanceUrl’: URL, ‘submit link’: URL, ‘sparql link’: URL, ‘es link’: URL}
The meaning of the different keys is explained below:

• ‘instanceUrl’: The top-level URL of the SynBioHub instance

• ‘submit link’: the SynBioHub link to which the HTML form should submit

• ‘sparql link’: URL at which the sparql endpoint may be accessed, could build
in authorization if desired

• ‘es link’: URL at which the elastic search endpoint may be accessed, could
build in authorization if desired (this endpoint allows the plugin to do fuzzy
string matching).

Plugin: Response Data
{‘search on click’: Boolean, ‘standard search’: Boolean, ‘own interface’: Boolean,
‘submit link’:url, ‘interface’: HTML or list}

The meaning of the different keys is explained below:

• ‘search on click’: Boolean that tells SynBioHub whether to search on selection
of the plugin or whether parameters are needed. If this is True, then all the
other keys can be disregarded and can pass on to the run endpoint

• ‘standard search’: Boolean that tells SynBioHub whether the search bar will
be used as input. If True, the search bar is used as input, otherwise the
interface returned will be used to gather parameters.

• ‘own interface’: Boolean to tell SynBioHub what kind of interface to expect
back. If True, than HTML will be sent as the interface if False, than a list
object indicating an HTML form will be sent back.

• ‘submit link’: The URL for SynBioHub to use if creating a form from the
single use object. It can be the same as the link SynBioHub sent or to another
plugin endpoint. Is not used if the own interface variable is set to True.

• ‘interface’: An HTML object or list to allow parameter entry. If a list, it has
an entry for every variable of the HTML form to be created. Each entry is a
dictionary with the keys:

∗ type: string, HTML-form input type

∗ label: string, heading to give above the input entry

∗ description: string, description/help text to provide to the user

∗ options: list, list of options, empty list unless the input is a radio or
checkbox

∗ default: list, list providing the default selection

∗ restrictions: dictionary, dictionary providing any further options that can
be provided to HTML forms, e.g. pattern is a key for the regex expression
used to check the input

50

results visualization or table to be visualized by SynBioHub (Algorithm 3.10). It also returns a list

of all URIs returned by the search, any columns, and facets to allow for filtering. The two kinds of

data that are allowable ensure search plugins can be used in many different kinds of search. The list

of URIs with facets allows visualization of the search results in a tabular manner similar to existing

biological databases like UniProt. Additionally, the facet format is designed to integrate with the

popular Elasticsearch tool. Whilst this is not an official standard, it is a de facto standard. The

option to return HTML instead of URIs enables custom search result visualizations. This allows

search results to be visualized as networks, or even interactive graphical elements. Whilst there

may not be many use cases for this yet, allowing HTML results display provides search plugins

with the flexibility to be used for scenarios that have not yet been encountered.

3.3.3 Index

Index plugins are more theoretical than the two other plugins mentioned so far. They are

designed to provide offline indexing that can be queried later. They can provide additional informa-

tion that may be migrated to the SynBioHub central data store at a later stage. This functionality

may be used to cache difficult to calculate parameters (like the GC content of a sequence) or to

store parameters that do not yet have an SBOL best practice associated with them (like Source

Organism). Additionally, this kind of plugin might be adapted to do large scale curation on an

offline basis overnight. An initial example might be the maintenance of the page-rank index.

The plugin API has not yet been developed. However, an initial idea of how the plugin might

work is described. SynBioHub sends a list of URIs to the plugin and the plugin creates an index

of URIs mapped to columns. These columns might be empty (in which case the plugin works

as a filter) or might contain information. The information does not have to be SBOL encoded.

This means information can be stored in a temporary format before incorporation into the SBOL

standard, if the column proves to be popular. The plugin returns the index to SynBioHub for

storage. The plugin should be able to incrementally update an index if the index is returned, or

perhaps if just a subset of URIs are provided.

51

Algorithm 3.10: Search Plugin API: RUN

RUN Endpoint
SynBioHub: POST Request
{‘instanceUrl’: URL, ‘sparql link’: URL, ‘es link’: URL, ‘search parameters’:
dictionary }

The meaning of the different keys is explained below:
• ‘instanceUrl’: The top-level URL of the SynBioHub instance

• ‘submit link’: the SynBioHub link to which the HTML form should submit

• ‘sparql link’: URL at which the sparql endpoint may be accessed, could build
in authorization if desired

• ‘es link’: URL at which the elastic search endpoint may be accessed, could
build in authorization if desired (this endpoint allows the plugin to do fuzzy
string matching).

• ‘search parameters’: A dictionary providing the output values from the eval-
uate form. Is empty if there is no output. Otherwise of the form {‘variable 1’:
[‘text input’], ‘variable 2’: [‘option 1’], ‘variable 3’: [‘option 1’, ‘option 2’]}

Plugin: Response Data
{‘table output’: list, ‘uris’: list, ‘facets’: dictionary, ‘columns’: list, ‘HTML’: string}
The meaning of the different keys is explained below:

• ‘table output’: List with a dictionary for each row in the table. The dictionary
has column names as keys and cell values as the value. One of the columns is
‘uri’ and contains the uri of the object. If using own output, then this will be
an empty dictionary

• ‘uris’: list of all uris returned by the search. If using own search results display
then this list will be empty

• ‘columns’: list of a columns in ‘table output’. If using own search results
display, then this list will be empty

• ‘HTML’: may be a blank string if the standard table output is being used.
Otherwise, this is the HTML displaying the search results output.

• ‘facets’: Dictionary of facets based on the elastic search idea of facets. This
summarizes the data and provides a way of filtering to use on the next query.
The dictionary has a key for every column that is being filtered. The value is
a list containing all the facets. Each facet is represented by a dictionary con-
taining the keys type (value or range), name (name to be displayed), and data
(list of dictionaries each containing the value (name) and the count (number)).
For an example see Figure 3.8.

52

Figure 3.8: Example of the facet dictionary returned for the role column. This complies with the
ElasticSearch standard. The roles listed use the sequence ontology URLs.

53

3.3.4 Link

Link plugins are designed to allow SynBioHub data to be seamlessly transferred between

SBOL tools. For example, visiting a design page and opening it in SBOLCanvas to make edits

after which the user returns to SynBioHub again where the new edited version is present. This

could in theory be done using a visualisation plugin, however this poses problems with sharing

authorization. The visual plugin could display a button which when clicked sends a request and

redirects to a new page (e.g. SBOLCanvas). However, how the user log-in info is transferred

is difficult. Additionally, it means redundant code will have to be written to update any SBOL

Objects sent to the ‘link application’.

Link plugins do not yet have a full API as some of the decisions about the API implemen-

tation are still being considered. The proposed options, their benefits, and their drawbacks are

discussed here. The ‘link application’ should receive authorization (if necessary), an instance URL

from SynBioHub, and a submission link where altered SBOL can be sent back to SynBioHub for

validation. However, whether the request can take in additional parameters from the plugin is

still being considered. The benefit would be allowing requests to applications that need additional

parameters and to which the developer has little access other than the API (e.g. Benchling). How-

ever, adding this would make creating the plugin more complex. Additionally, the plugin should

have a status and evaluate endpoint. The status endpoint can be the standard endpoint seen in all

plugins. The evaluate endpoint would be used to decide if the plugin shows up on SBOL object

pages. The evaluate endpoint should receive the RDF-type. It might also receive the SBOL links.

This would be useful as an application might be unable to process SBOL objects without particu-

lar triples (e.g. attachment of an archive file). The evaluate endpoint could directly return all the

information needed by SynBioHub, but there could also be a separate run endpoint. The benefit of

a separate endpoint is to decrease the complexity of the evaluate endpoint and make the different

endpoints more modular. The downside is if the evaluate endpoint is simply adding an additional

API call to a run endpoint that might be needlessly time consuming. As discussions continue, an

54

initial repository has been set up to start testing different configurations of the endpoints. The

repository can be found at: https://github.com/SynBioHub/Plugin-Link-Test.

3.4 Example Plugins

Table 3.1 is a table of all plugins created to date. The column “External” indicates whether

the plugin was developed by the author or other developers. Note the number of plugins developed

by others. This highlights the ability of others to use the plugin framework and the interest in

doing so.

3.5 Further Work

There is still further work to be done on plugins. First and foremost, the proposed new

plugins must be further developed and incorporated into the SynBioHub interface. They could be

incorporated into SynBioHub3, which is currently under active development.

Additionally, plugins are currently not accessible via the SynBioHub API. For example, a

submission via the API does not allow submit plugins to be used. Making plugins accessible via

the API is an important step. This is particularly important as SynBioHub3 separates front and

back-end code and has the front end call the back-end via the API. Additionally, the new front

end is developed to allow multiple file downloads from a ‘cart’ option. Enabling multi-file calls for

download plugins (either via multiple API calls or by updating download plugins to allow multiple

downloads at once) should be considered.

Finally, the creation of a plugin registry/marketplace where plugins are listed in a format

similar to Table 3.1 is a next step. Having a registry aware of all running plugins would allow users

to more easily add plugins to their SynBioHub instances. This would increase the ease of plugin

use. It would work something like a plugin App store or a browser extension manager.

https://github.com/SynBioHub/Plugin-Link-Test

55

Table 3.1: A table summarising all plugins currently available. Note the number of plugins devel-
oped by External developers (i.e. not this author).

Name External Language Test Description

CurationSynbict No Python No Runs SYNBICT to add component annotations to com-
ponent definitions

DownloadSBOL2Excel No Python No Downloads an SBOL file into an excel template

DownloadSnapgene No Python No Returns one of: genbank file, snapgene visualization,
zip of both. Either of the component or the component
after annotation with snapgene

SubmitExcel2SBOL No Python No Turns an excel template submission into SBOL

SubmitSnapgene No Python No Takes in a snapgene file and converts it to sbol

VisualComponentUse No Python No Shows a co-use component sankey diagram, and the
most used components bar graph endpoints

VisualIgem No TypeScript No The iGEM Main Page, iGEM Design Page, and iGEM
Experience Page

CurationTest No Python Yes Allows developers to play with the curation plugins and
provides a simple example to check that they are up and
running

DownloadTest No Python Yes Indicates that download plugins are working and pro-
vides a framework to play with for plugin developers

DownloadTestEval No Python Yes Designed to show what parameters the evaluate end-
point recieves. Was a way of testing and developing

DownloadTestJs No JavaScript Yes Indicates that download plugins are working and pro-
vides a framework to play with for plugin developers

IndexTest No Python Yes Allows developers to play with the index plugins and
provides a simple example to check that they are up
and running

LinkTest No Python Yes Allows developers to play with the link plugins and pro-
vides a simple example to check that they are up and
running

SearchTest No Python Yes Allows developers to play with the search plugins and
provides a simple example to check that they are up
and running

SubmitTest No Python Yes Indicates that submit plugins are working and provides
a framework to play with for plugin developers

SubmitTestJs No Python Yes Indicates that submit plugins are working and provides
a framework to play with for plugin developers

VisualServe No Python Yes Allows testing of file serving and provides a framework
to play with for plugin developers

VisualServelet No JavaScript Yes Allows testing of file serving and provides a framework
to play with for plugin developers

VisualTest No Python Yes Indicates that visualisation plugins are working and
provides a framework to play with for plugin developers

VisualTestJS No JavaScript Yes Indicates that submit plugins are working and provides
a framework to play with for plugin developers

DownloadiBioSim Yes Python No Runs an iBioSim simultaion based on a COMBINE
archive

DownloadShortbol Yes Python No Downloads a shortbol file

SubmitExcelComposition Yes Python No Allows submissions of excel composite templates

SubmitExcelLibrary Yes Python No Allows submissions of excel library templates

SubmitShortbol Yes Python No Turns a shortbol file into SBOL

VisualFlapjack Yes Python No Visualizes measurement plots for experimental data
with a Flapjack id

VisualProteinStructure Yes Python No Visualizes protein structures

VisualSeqviz Yes JavaScript No Shows the plasmid view and sequence view of compo-
nents

VisualVisBOLJs Yes JavaScript No Creates a VisBOL image

Chapter 4

Excel-SBOL Converter

Shared representations for data and metadata, grounded in well-defined ontology terms, can

help make it easier to share materials between biologists [232]. If sharing is made easier, then parts

can be reused more. However, using formal representations, such as SBOL, typically requires either

a thorough understanding of these standards or a suite of tools developed in concurrence with the

ontologies [127]. Unfortunately, this poses a significant barrier to use for scientists not trained to

work with such abstractions. One approach to lowering the barrier to the use of ontologies, was

demonstrated in the Systems Biology for Micro-Organisms (SysMO) consortium [29]. In SysMO,

the MicroArray Gene Expression Markup Language (Mage-ML) was set up as an XML schema [199],

and users were expected to submit data to the SysMO Assets Catalogue (called SEEK) in XML

format in order to publish work. To allow the use of the Mage-ML language without having to

understand XML, the RightField tool was created [234], an ontology annotation and information

management application that can add constrained ontology term selection to Excel spreadsheets.

This tool enables administrators to create templates with controlled vocabularies, such that the

scientists utilizing the tool would never actually see the raw RightField, only the more familiar Excel

spreadsheet interface. Spreadsheets are a popular interface as many biological workflows already use

spreadsheets and comma seperated values. Furthermore, several popular tools use spreadsheets and

CSV files as inputs or outputs, including Addgene (https://www.addgene.org/), and opentrons

(https://opentrons.com/).

Similarly, users of SBOL and SynBioHub have faced a steep learning curve for understanding

https://www.addgene.org/
https://opentrons.com/

57

the underlying ontology: as assessed in [217], “For successful use and interpretation of metadata

presented in SynBioHub, the semantic annotation process should be biologist-friendly and hide

the underlying RDF predicates.” Recently, SynBio2Easy was published as a command-line tool

to convert Excel spreadsheets of plasmids to SBOL [246]. Similarly, the Excel-SBOL Converter

presented here has been designed to provide a simple way for users to generate and visualize

SBOL data without needing a detailed understanding of the underlying ontology and associated

technologies. Unlike SynBio2Easy, the converter focuses on multiple kinds of SBOL data and allows

customization of the templates. The converter provides a simple way for users to manage data by

allowing users to download SBOL into Excel templates and submit Excel templates for conversion

into SBOL (Figure 4.1). Additionally, it was tested and expanded based on two case studies:

experimental data [241], and the existing Cello genetic part library [158].

Figure 4.1: The Excel-SBOL Converter consists of two libraries: 1) to allow the use of Excel
Templates to create SBOL data, and 2) to allow SBOL data to be downloaded as Excel Spread-
sheets. Using the two libraries together allows the creation, uploading, downloading, editing, and
re-uploading of data. Additionally, it allows collaboration between users who prefer spreadsheets
and those who prefer SBOL.

58

4.1 Excel-to-SBOL Evolution

The Excel-to-SBOL converter evolved via several iterations as the scale and capability of the

converter expanded. Over time, the imagined workflow pipeline changed as depicted in Figure 4.2.

To allow more flexibility in the types of SBOL data that could be created, the templates became

more complex and general. This means that to design a template, knowledge of the SBOL data

structure is now required. However, it should still be possible to hide the complexities of the

template from the novice SBOL user. To justify the design decisions, the sections below cover the

different iterations, benefits, and limitations that led to the next version of the converter.

4.1.1 Iteration 1: Fixed Column Templates

The original library was created based on Excel templates used by the DARPA SD2 project

(Defense Advanced Research Projects Agency Synergistic Discovery and Design (https://sd2e.

org/)). There was a library sheet (See Figure 4.3) for the creation of single component parts, and

a composite sheet (Figure 4.4) for the creation of components from sub-components. Due to the

very different sheet layouts and types of SBOL they contained, two separate code libraries were

required, one for processing the part library sheet and one for processing the composite library

sheet. Each is described below.

4.1.1.1 Part Library

The part library sheet is processed using Algorithm 4.1. Note the full code can be found in the

archived github repository: https://github.com/SynBioHub/Plugin-Submit-Excel-Library.

The code was very fixed to the template. There was some flexibility in column value extraction

as they are extracted based on column names, which are a variable (i.e., not hard coded). However,

the default names are the function defaults and a user has to go in and edit the code should

they wish to update the names (there is no smart way of deciding how to process the columns).

Additionally, all of these columns must be present and no additional columns are possible.

https://sd2e.org/
https://sd2e.org/
https://github.com/SynBioHub/Plugin-Submit-Excel-Library

59

Figure 4.2: Evolution of the Excel-to-SBOL pipeline over time. In all cases once the templates
are created, they are filled in by the user. These templates are then converted to SBOL using
the Converter. This SBOL can be uploaded to SynBioHub or used in other tools. A: Initially
a single rigid template was used for data collection. B: The converter was designed to be more
flexible in the conversion of different templates. It became possible for someone familiar with the
SBOL specification to design new templates for novice users. C: Templates now allow multi-sheet
interactivity whilst maintaining the flexibility created in pipeline B.

60

Figure 4.3: SD2 Library Template. This is the template for the import of single components. Note
the three sections: collection information at the top, the design description, and the headers for
the part information.

Algorithm 4.1: Excel-to-SBOL Iteration 1: Part Library Processing

Input: Excel Library Sheet Filled, Excel Library Sheet Empty
Output: SBOL File
initialization
if blank template structure = filled template structure then

SBOL Document Name ← Metadata Value: Collection Name
SBOL Document Description ← Metadata Value: Description
for row in library do

Create ComponentDefinition
ComponentDefinition role ← value in role column
ComponentDefinition name ← value in name column
ComponenDefinitiont description ← value in description column
Sequence Object Created based on value in sequence column, with spaces removed
ComponentDefinition sequence references the newly created Sequence Object

61

Figure 4.4: SD2 Composite Template. Note the many separate tables for each collection of com-
posites that are created.

62

4.1.1.2 Composite Library

The algorithm for processing composite libraries is shown in Algorithm 4.2. Note the full

code can be found in the archived github repository: https://github.com/SynBioHub/Plugin-

Submit-Excel-Composition. This code allows for the creation of composite parts. Additionally,

the (reversible) conversion function to SBOL compliant collection names can be used in other

contexts too. Unfortunately, a lot of code is necessary to read in the part libraries that are already

being read in to convert the simple part library. Additionally, the code is even more complex

because of the mutli-table input style of the composites sheet. Finally, the composite sheets do not

allow any custom columns to be input by the user or any flexibility in the object type that is being

created.

Algorithm 4.2: Excel-to-SBOL Iteration 1: Composite Library Processing

Input: Excel Library Sheet Filled, Excel Library Sheet Empty
Output: SBOL File
initialization
if blank template structure = filled template structure then

collection start list ← list of all rows containing ‘Collection Name:’ and the number of
filled columns in the ‘Part Sequence:’ row

Extract Parts from Sheet (collection start list):
for collection in collection start list do

for column in collection do
Add collecion name: part name: part list to Part Dictionary
Add parts list to Part List

Check Part Names are SBOL compliant
Create SBOL (Part List, Part Dictionary):

Pull all part definitions from their urls
for collection in Part Dictionary do

Create Collection
for Part Name in collection do

Create ComponentDefinition
Assemble Composite ComponentDefinition
Add Component Description
Add ComponentDefinition to Collection

https://github.com/SynBioHub/Plugin-Submit-Excel-Composition
https://github.com/SynBioHub/Plugin-Submit-Excel-Composition

63

4.1.2 Iteration 2: Flexible Column Templates

Based on the limitations of the first version, a new version of the template and reader was

developed. The aims were: a single library to process library and composite templates, reduced

code redundancy, more machine friendly template layouts, and more flexibility in the kinds of

SBOL objects that could be encoded in the sheet. To achieve these aims, a single template

type, like the library template used in the DARPA SD2 project, was used. This was supple-

mented by a column definitions sheet. The column definitions sheet provides two sets of infor-

mation about each column: whether the value in the column should be converted to a machine

readable version, and if yes then how, and the SBOL encoding the converter should use for the

column. This allows a template creator to add any properties they might want (SBOL or oth-

erwise), name the columns in a human readable way in the sheet, and only provide a machine

readable version behind the scenes in the column definitions sheet. A more complete descrip-

tion of the columns sheet is given below. Hypothetically, one of the property columns could

be the object type which would then be used to create different SBOL object types. How-

ever, the next version was created before this was implemented. The full code can be found at

the github repository merge instance found here: https://github.com/SynBioDex/Excel-to-

SBOL/tree/787e088a7c916bb69c6b167932c3219674075d8d. The code works as outlined in Algo-

rithm 4.3.

4.1.2.1 Column Definitions Sheet

The column definitions sheet is used for two things: conversion of cell values to a machine

readable format, and conversion of cell values to SBOL. The conversion to a machine readable

format happens first. This is based on the “Sheet Lookup” and “Replacement Lookup” Columns

(as shown in Figure 4.5). Sheet lookup takes the cell value and converts it to another value like

a lookup dictionary. For example, promoter to http://identifiers.org/so/SO:0000167. This

is done by creating a conversion dictionary from a sheet and going from the value in one column

https://github.com/SynBioDex/Excel-to-SBOL/tree/787e088a7c916bb69c6b167932c3219674075d8d
https://github.com/SynBioDex/Excel-to-SBOL/tree/787e088a7c916bb69c6b167932c3219674075d8d
http://identifiers.org/so/SO:0000167

64

Algorithm 4.3: Excel-to-SBOL Iteration 2: Flexible Column Templates

Input: Excel Filled Template
Output: SBOL File
Initialization
Use metadata on Library Sheet to Set SBOL Document Properties
for row in library do

Create ComponentDefinition
for column in row do

Convert cell value using column definitions sheet Ontologies (may use sheet lookup or
replacement lookup)

Pull SBOL Term from column definitions sheet
switch SBOL Term do

case Not Applicable do
continue

case Altered Sequence do
ComponentDefinition was Generated by ← cell value

case Data Source do
ComponentDefinition was Derived From ← cell value
if ‘PubMed’ in cell value then

ComponentDefinition PubMed Property ← cell value
case Source Organism do

Define Source Organism Property
ComponentDefinition Source Organism ← cell value

case Target Organism do
Define Target Organism Property
ComponentDefinition Target Organism ← cell value

case Role do
if ComponentDefinition has role(s) then

Add cell value to ComponentDefinition roles
else

ComponentDefinition Role ← cell value

case Role Circular do
if cell value is True and ComponentDefinition has role(s) then

Add Circular to ComponentDefinition roles
else if cell value is True then

ComponentDefinition Role ← Circular

case Display ID do
ComponentDefinition Display ID ← cell value

case Sequence do
Remove spaces from cell value and make it lowercase
Create SBOL Sequence Object
Sequence Name ← ComponentDefinition Name
Add Sequence to Document
Link Sequence to ComponentDefinition

otherwise do
Add cell value to ComponentDefinition as a text property using the name
space provided in column definitions sheet

Add ComponentDefinition to SBOL Document

65

to the value in another column. It provides a simple and versatile way for human readable values

to be converted to ontology values. It can be used for true ontologies and for any other kind of

conversion. For example, TRUE can convert to a specific value or a nickname can be used to call

a full name. The downside is it does require the full list of value and conversion pairs to be listed.

For values that are being pulled from ontologies this can be a long list which is mostly not used.

Additionally, it does not allow the conversion of IDs to URLs.

The replacement lookup is a special case of sheet lookup. In this case, the cell value is

expected to be prefix:value, e.g. PMID:24295448, representing the data source is a PubMed id

with the value 24295448. Here the lookup works by using the prefix as the key and pulls a value

from the “To Column” and inserts the cell suffix in the place of {REPLACE HERE}. So for the case

PMID:24295448, the PMID key gives the string https://pubmed.ncbi.nlm.nih.gov/{REPLACE_

HERE}, which is changed to https://pubmed.ncbi.nlm.nih.gov/24295448. This kind of lookup

is useful in the case where several different kinds of information are put in one column, e.g. data

source might be GenBank, PubMed, AddGene, etc. Additionally, it allows the formatting of a URL

rather than being a direct ‘translation’ in the way a simple sheet look up is.

After the cell value conversion to a machine readable format, the column definitions sheet

is used to convert cell values to SBOL. This is done using the “SBOL Term” and “Namespace

URL” column. If the SBOL term is a defined case in the switch method, then it is implemented

via the code in the case statement (see the switch statement in Algorithm 4.3). For example,

sbh sourceOrganism creates the SBH namespace and the URI property sourceOrganism, and then

sets the property equal to the value: https://identifiers.org/taxonomy:{cell_value}. For

sbol role, after checking the type, the SBOL2 ComponentDefinition property role is used to add the

information. If the SBOL Term is not a defined case, then a fall back method is called that adds

the namespace to the document, creates the text attribute sbol suffix, and sets the attributes value

equal to the cell value. For example, sbh designNotes leads to the adding of the sbh namespace

using the value found in the Namespace URL column. Then, the attribute designNotes is added to

the ComponentDefinition object, and it is set equal to the cell value. This allows new properties to

https://pubmed.ncbi.nlm.nih.gov/{REPLACE_HERE}
https://pubmed.ncbi.nlm.nih.gov/{REPLACE_HERE}
https://pubmed.ncbi.nlm.nih.gov/24295448
https://identifiers.org/taxonomy:{cell_value}

66

be defined by users whilst still having standard processing methods for commonly used properties.

Figure 4.5: Example of the Column Definitions Sheet used in the Flexible Column Templates. The
names of the columns found on the library sheet are seen in the Column titled “Column Name”.
The SBOL Term column is used together with the Namespace URL to determine how cell values
will be encoded in SBOL. The final five columns are used to convert cell values to more machine
readable formats via the use of ontologies.

4.1.2.2 Additional features

Apart from the addition of the column definitions sheet, the GitHub repository also under-

went improvements. GitHub actions were added to automatically push a new Python library to

PyPi whenever a new release is created on GitHub. This makes it easier to automatically role out

new versions of the library when changes are made. Additionally, a unit test library was created

using pytest (https://docs.pytest.org/en/7.0.x/#). This library is automatically run on pull

requests together with flake8 linting (https://flake8.pycqa.org/en/latest/). The pytests en-

sure that when edits are made, the original functionality is still retained. The linting ensures that

standards of the Python language are maintained, which makes it easier for others to work on the

existing code base.

https://docs.pytest.org/en/7.0.x/#
https://flake8.pycqa.org/en/latest/

67

4.1.2.3 Weaknesses

Despite the additional flexibility and reduction of code redundancy in this version, there are

still weaknesses. Notably, the SBOL object type is hard coded rather than being read in from

the sheet so only ComponentDefinitions can be created. Furthermore, most SBOL properties that

are added require the definition of a new case for the converter. Additionally, every library sheet

must be processed individually, and only one library sheet can be processed per workbook. This

means that no objects can be created referencing objects in another sheet or workbook, and that

the ontology sheets are duplicated between workbooks. The latter is particularly inefficient as all

ontology sheets have to contain the entire ontology and every ontology gets its own sheet. Each of

these weaknesses reflect a lack of flexibility in the code.

There are also a second set of issues related to the way single columns are processed. As every

column must be processed on its own, a property which has multiple values has to be combined

to a single column. Such a combined column must then be split in the code and processed using

a special case property function. Setting up a standard splitting procedure for columns would

decrease the special case code. Automatic splitting would also make it easier to allow checking of

cell inputs via template specified regular expressions. Allowing regular expression based validation

creates an additional checking mechanism for the more flexible code.

A final issue is that the sheet metadata (top left table in Figure 4.3) is required to be filled

in, but it is not used by SynBioHub, and is not always relevant.

4.1.3 Iteration 3: Multi-Library Templates

Based on the weaknesses of the flexible column templates, the next version was developed:

multi-library templates. The main innovations are the ‘Init’, or initialize, sheet that allows multiple

sheets to be read and the multiple scanning of sheets that allows SBOL objects to be referenced

across sheets. The new ‘Init’ sheet and updated column definitions sheet are explained further

below, after an overview of how the processing works now. The full code can be found at https:

https://github.com/SynBioDex/Excel-to-SBOL

68

//github.com/SynBioDex/Excel-to-SBOL. The algorithm used is shown in Algorithm 4.4.

4.1.3.1 Init Sheet

The “Init” sheet is a list of all sheets to be processed (Figure 4.6). The sheet name is given

in the first column and the kind of conversion in the second column (if True it contains SBOL

objects, if false it is only to be used to convert cell values). The next columns indicate how the

structure of the sheet works. These columns indicate whether each of the three elements found

in the initial DARPA SD2 template (Figure 4.3) exists. The library section of SBOL objects or

conversion is given a start row. Then, the collection metadata is said to be present or absent.

If present, the number of rows are specified and which columns it can be found in. Finally, the

collection description is present or absent, and if present, the start row and column are given.

The use of the Init sheet in this way means multiple sheets can be converted and none of the

sheets needs to have redundant collection or description information. It allows for templates where

each sheet takes a different kind of SBOL object, and for referencing of SBOL objects between

sheets without worrying about the order of conversion of the objects.

Figure 4.6: Example of the initialization sheet used in the multi-sheet templates. The left most
column contains the names of the sheets to be processed. Next the ‘Convert’ column indicates
whether the sheet contains SBOL objects (contains SBOL objects if TRUE). The ‘Lib Start Row’
column indicates in which row the information on the sheet starts (note this is zero-indexed). The
final columns are about the elements of sheet, is there metadata and/or a description field, and if
so where?

https://github.com/SynBioDex/Excel-to-SBOL
https://github.com/SynBioDex/Excel-to-SBOL

69

Algorithm 4.4: Excel-to-SBOL Iteration 3: Multi-Library Templates

Input: Excel Filled Template
Output: SBOL File
Initialization

Read in Init Sheet and create a list of sheets with SBOL objects in them
Read in all Sheets based on Init Sheet
Read in Column Definitions Sheet

Parse Objects
Create SBOL Document
for sheet in SBOL Object Sheets do

Find Display ID Column and SBOL Object Type Column
for SBOL Object in sheet do

Create SBOL Object
Save SBOL Object in a dictionary common name:URI

Parse Columns
for sheet in SBOL Object Sheets do

for Row in sheet do
for Column in Row do

Split the cell value based on Column Definitions Sheet split column
Convert cell value using Ontology Lookups found in Column Definitions Sheet
Check that the converted cell value match the pattern specified in the

Column Definitions Sheet
Convert the cell value based on SBOL Term, Namespace URL and Parental
Lookup values from the Column Definitions Sheet

70

4.1.3.2 Column Definitions Sheet

The column definitions sheet is similar to the previous version, but it is extended (Figure 4.7).

There are now roughly five sections of the sheet: the name, the SBOL Type, splitting information,

pattern information, and lookup information. The name now requires two columns: the sheet

name and the column name. This means column names do not have to be unique and can be

shared across different sheets and processed in different ways. The SBOL Type has three columns:

“SBOL Term”, “Namespace URL”, and “Type”. The addition of the type column indicates if a

new property should be initiated as a text or URI property. The addition of this column is part of

what allows this version to be more flexible in the basic code and require fewer special cases to be

written out for column processing.

Figure 4.7: Example of the Column Definitions Sheet used in the Multi-Sheet Templates. Unlike the
single-sheet templates, this sheet had the sheet name column as the first column. This is required
to identify the column name, as the same column name may be repeated. Next a column indicates
the encoding property for the cell. The Namespace and Type columns are used in conjunction
with this. The Split On column is used to split a single column into multiple values for a property.
The Pattern column contains regex expressions to check the cell values after they have undergone
conversion. The following columns contain conversion information to go from human to machine
readable values. The new columns here are the object ID lookup and the Parent lookup which are
used to reference an SBOL object defined in the workbook, and the direction of the reference.

The splitting information is a single column that contains split characters surrounded by

double quotes. For example, Library2, Thing1 has cells which are split both on the : character and

the character as indicated by the Split On value of “:”“ ”.

Pattern Information is also contained in a single column. It contains a series of regular

expressions to apply separated by quotations. For example: “ ∧ [a − zA − Z\s∗] + $” “https :

\/\/www.ncbi.nlm.nih.gov/nuccore/.∗” is used for checking sequence entries. This indicates that

71

entries should either contain only alphabetical characters and spaces or be URLs starting with

https://www.ncbi.nlm.nih.gov/nuccore/.

The lookup information consists of nine columns. First, a series of TRUE/FALSE columns

and then columns with further information. The sheet lookup and replacement lookup work the

same way as before (working in tandem with the lookup sheet name and from col and to col

columns). The additional lookups that were added are: Tyto (Python Ontology Package), Ob-

ject ID Lookup, and Parent Lookup. The Tyto lookup uses the Tyto (https://github.com/

SynBioDex/tyto) library rather than sheets to perform lookups. The Tyto column indicates that

the Tyto library should be used and the ontology to look the terms up in is given by the ontology

name column. The Object ID Lookup means that the cell value is converted to the URI. For ex-

ample, a part called GFP promoter can be referenced using that name, but this reference can then

be converted to the URI http://www.examples.org/gfp promoter using this lookup. The lookup

only works for SBOL objects. If the parent lookup column is also true, then it indicates that the

current object is added as a property to the referenced object rather than the standard, which is

vice versa. For example, in a row for a ComponentDefinition called GFP promoter, there may be

a collection column with the collection name: Test collection. If the Parent Lookup is true, then

rather than adding Test collection to GFP promoter using the sbol member attribute, the GFP

promoter URI is added to the Test collection object using the sbol member attribute.

4.1.3.3 Strengths

This new version allows multiple sheets with different SBOL object types to be processed.

Additionally, the converter can now output either SBOL2 or SBOL3 documents depending on a

parameter given to the converter. This makes it more flexible to integrate within synthetic biology

workflows.

This version solves the issues of: redundant code cases for column conversion, redundant

collection metadata, and the difficulty of special cases for all column splitting. The feature to check

column conversion output using regular expressions was also added. Additionally, the inclusion of

https://www.ncbi.nlm.nih.gov/nuccore/
https://github.com/SynBioDex/tyto
https://github.com/SynBioDex/tyto

72

Tyto allows ontologies to be used without creating a full ontology sheet. However, if the input

is to be limited for the user then an ontology sheet still needs to be provided. Reducing code

redundancy makes the library easier to understand and maintain by other developers. No longer

requiring redundant collection metadata makes it less confusing for users to use. Making it easier

to split columns and add ontologies increases the flexibility of the converter to handle disparate

templates.

4.2 Excel-to-SBOL Case Study

The development of the converter was driven by an experimental data case study.

Flapjack is an experimental data tool to store metadata (e.g. experimental conditions, assay

types) and experimental results obtained from genetic components [241]. It provides an interactive

front-end for the analysis and plotting of experimental results. Additionally, a Python package and

REST API is provided to allow Flapjack to integrate with other software. Data can be uploaded to

Flapjack from spreadsheets. Flapjack uses SBOL to store the genetic component information, but

does not store the full range of information that SynBioHub does. A system is envisioned where

experimental data is stored in Flapjack and cross referenced with genetic design data in SynBioHub.

To fit this system into existing synthetic biology workflows a single spreadsheet may be used to

store all experimental data. This spreadsheet is then processed by two converters: Excel-to-SBOL

to upload the information to SynBioHub, and the Flapjack converter to upload the information to

Flapjack. Here we test the Excel-to-SBOL processing part of the proposed workflow.

Flapjack spreadsheets contain several different sheets in order to explain an experiment.

There are sheets for the studies carried out, the 96 well plates used in the studies (assays), the

samples (wells in the plate), and measurements (a value for a signal at a time for a particular

sample).

The processing of Flapjack spreadsheets required several additional functions to be added to

the Excel-to-SBOL converter. The converter had to be able to process multiple sheets with SBOL

objects on them, process ExperimentalData SBOL objects, and be able to link SBOL objects

73

Figure 4.8: Example of a Flapjack Setup. Top: An example experiment for how the Flapjack
multisheets may be utilized shows studies with four repeats, which have measurements taken over
a period of four hours every ten minutes. For each repeat, there are ten plates per repeat with
one assay per plate. With use of the standard 96 wells for each plate, we have a total of 3,840
samples across ten plates. Finally, each sample is measured at each of the 25 time points. Bottom:
Given this experimental setup, the five different sheets are used to describe and connect information
for Study, Assay, Sample Designs, Samples, and Measurements. In the Excel-to-SBOL converter,
there are also seven additional sheets for the following information: “Signal” , “Media” , “Strain” ,
“Supplement” , “Vector” , “Chemical” , and “DNA” (which are omitted in this Figure). Note the
way the sheets are linked via IDs. For example, assays identify the study they are part of using the
“Study ID” column and similarly, samples to assay with “Assay ID” and measurements to sample
with “Sample ID”.

74

across sheets. The objects had to be able to link from parent to child and from child to parent. For

example, assays are able to identify the studies they are a part of and samples identify the assay

they are a part of (Figure 4.8).

4.3 SBOL-to-Excel

To compliment the Excel-to-SBOL converter, work was also done to create an SBOL-to-Excel

converter (https://github.com/SynBioDex/SBOL-to-Excel). One intended use is to allow novice

users to download SBOL data in Excel format to provide an example of data that can be submitted

to the Excel-to-SBOL library. This takes in an RDF file and for every top-level item creates a row

with a column for every property (Algorithm 4.5).

The RDFlib python library was used to allow the processing of SBOL2 and SBOL3 files in

a consistent manner. It allows conversion of many different object types whilst maintaining code

simplicity. This library is able to parse any kind of RDF file (including SBOL2 XML, SBOL3 XML,

and SBOL3 turtle files). This library provides simple code that can be generalized to many different

file types. The code creates a list of top-level SBOL objects and then finds all of the property-value

pairs for these objects. The property names are processed to make them more human readable.

The columns are reordered based on a provided column order and any unnecessary columns are

dropped. Each of the values are converted to be more human readable. Finally, the result is output

to a spreadsheet (Figure 4.9).

4.4 SBOL-to-Excel Case Study

The Cello library was chosen as a case study due to the variety of SBOL objects it contains,

including objects with a diverse set of custom annotations [158]. In order to achieve compliance with

these varied SBOL types, it was key that the Converter had a way of dynamically manipulating these

types. With the XML parsing capabilities offered by RDFLib, the converter is able to successfully

process and organize all of the data into an Excel spreadsheet, facilitating the analysis of the SBOL

document for the user. The results of the Cello conversion can be seen in Figure 4.9.

https://github.com/SynBioDex/SBOL-to-Excel

75
Algorithm 4.5: SBOL-to-Excel Iteration 2: RDF Conversion

Input: SBOL File
Output: Excel Filled Template
Initialization

Load SBOL document
Initialize output path; Initialize human readable role and organism

Parse Objects
Initialize Data Frame
for Subject, Predicate, Object in SBOL document do

Add items to Data Frame, if Subject is the toplevel object
Process Subjects

for Key, Value in Data Frame
Process each key to a human readable form

return Data Frame
Process Column Names

for Column Name in Predicate
Process the property URLs into human readable values to be set as the column
names

return processed Column Name
Reorder and Drop Columns

Any Data Frame columns found in the column list are reordered according to the order
in the column list and are moved to the front. The rest of the columns maintain the
same order.

Get Data Frame with list of new columns
Drop unnecessary columns from Data Frame.
return Data Frame with list of dropped columns

Dataframe to Excel Processing
for Column in Work Sheet

Initialize the column name
for cell in Column

Process the value within the worksheet to a human readable and hyperlinked
form, otherwise iterate of the value

4.5 Submit and Download Plugins

Based on the plugin interface developed in Chapter 3 and the PyPi library developed in

this chapter, it was straightforward to develop a submit plugin (see Figure 4.10) which takes

in Excel sheets, constructed using the templates as described in this chapter, and uploads the

converted SBOL to SynBioHub. This provides a key piece of a post-hoc curation pipeline discussed

in Chapter 5. Similarly, a download plugin was developed using the SBOL-to-Excel PyPI library.

76

Figure 4.9: Spreadsheet output by the SBOL-to-Excel library. This is an example output for the
Cello library. Note the hyperlinks in the cells and the human readable column names.

4.6 Conclusions

This chapter presents two Python libraries: Excel-to-SBOL and SBOL-to-Excel. The de-

velopment of these libraries makes it easier for SBOL to be incorporated into existing synthetic

biology workflows that make use of spreadsheets for data capture.

The Excel-to-SBOL converter allows multiple sheets with different SBOL object types to be

processed. Additionally, the converter can output either SBOL2 or SBOL3 documents depending

on a parameter given to the converter. The converter can be used to convert spreadsheet columns

into any RDF properties. Furthermore, it can check column conversion output using user supplied

regular expressions. Finally, the inclusion of lookups allows user friendly names to be used in the

spreadsheet that are then processed into ontology terms by the converter.

The next steps in the development of the Excel-to-SBOL converter interface would be the

development of sheet creation checking. For example, the ability to check sheet ontologies are

correct using Excel Plugins. Excel plugins could also be used to automate the cell input check-

77

Figure 4.10: Integration of Excel-to-SBOL and SBOL-to-Excel Plugins with SynBioHub. Sub-
mit: When a user uploads an Excel Template to the submit endpoint, SynBioHub sends it to the
Excel-to-SBOL plugin, which returns SBOL. SynBioHub then processes the returned SBOL and
continues with submission. Download: If a user requests an Excel sheet download from SynBio-
Hub, SynBioHub sends the appropriate SBOL to the SBOL-to-Excel plugin. The plugin returns
an Excel Spreadsheet to SynBioHub, which in turn is passed to the user.

78

ing, rather than using the current built-in data validation based on a template list. This would

be particularly useful when multiple inputs are allowed. For the development of the ecosystem,

more standard templates with example data should be created. This provides a starting point for

template creators as well as template users.

The SBOL-to-Excel converter can process any RDF file and turn it into a spreadsheet. This

allows both SBOL2 and SBOL3 documents to be converted to spreadsheets. The conversion makes

the values more human readable, and adds hyperlinks to the sheets. In order to promote greater

organization, the next step for this library is to output the columns into separate sheets. Addi-

tionally, the process of conversion should be recorded in a column definitions sheet. Such a sheet

would also provide the basis for the round-tripping of sheets.

The round-tripping of sheets still requires further work. Whilst the output of SBOL-to-Excel

is similar to the input for Excel-to-SBOL there are a few issues. The spreadsheet output has

no “Init” or “Column Definitions” sheet. Additionally, the spreadsheet uses hyperlinks that the

Excel-to-SBOL converter cannot process. The creation of “Init” and “Column” sheets needs to be

incorporated into the SBOL-to-Excel converter, otherwise, there is no way to reverse the property

to cell value conversion. The processing of hyperlinks may be added as a feature to Excel-to-SBOL

or as a stand-alone utility. Finally, to be able to round trip with SynBioHub the namespace must

be considered. SynBioHub URLs cannot be re-uploaded to SynBioHub. Thus, SBOL object URLs

will require a change of namespace if the objects are to be reuploaded to SynBioHub (e.g. https:

//synbiohub.org/public/igem/BBa_E0040/1 to https://www.examples.org/BBa_E0040/1).

The case studies both indicated that more thought should be put into a core information

standard. Whilst, there are currently best practices, there is still a lot of information that people

wish to encode with no standard way of doing so. As further Excel templates are developed, the

templates will serve as a de facto standards for information to be collected. Thus, the development

of further templates should be done bearing this in mind. This idea is discussed further in Chapter 6.

https://synbiohub.org/public/igem/BBa_E0040/1
https://synbiohub.org/public/igem/BBa_E0040/1
https://www.examples.org/BBa_E0040/1

Chapter 5

Post Hoc Curation

For parts to be reused, the effective sharing of genetic design information is required. Well

characterized biological parts are needed to increase the accuracy of network level simulation [5],

allow programmatic access to registry databases from multiple client applications [168], and allow

the design of scalable circuits without looking at individual reactions [135]. Several attempts

have been made to define what a well characterized part is. These include the Provisional BioBrick

Lanugage (PoBoL) [73], the use of electrical engineering inspired data sheets for genetic devices [36,

135], behavioral characteristics of a part (for example, polymerase operations per second) [172], and

atomic (non-composite/basic) parts [168]. However, due to the rapid growth of synthetic biology

the standards are continually growing and expanding. This then poses the issue of components

submitted at different times having different metadata associated with them.

To enable synthetic biology through the effective sharing of reusable genetic design infor-

mation several databases were created. These databases have to contend with the variation in

metadata over time. A method of dealing with such variation is to carry out post-hoc curation

at intervals after submission. Three large very different databases in synthetic biology are: the In-

ternational Genetically Engineered Machines (iGEM) Registry of Standard Biological Parts

(http://parts.igem.org/), the AddGene database (https://www.addgene.org/), and the arti-

cle database for ACS Synthetic Biology journal (ACS Dataset) (https://pubs.acs.org/journal/

asbcd6). While this last one may not seem like a genetic design database, significant information

about genetic designs are only shared via these articles and their corresponding supplemental data

http://parts.igem.org/
https://www.addgene.org/
https://pubs.acs.org/journal/asbcd6
https://pubs.acs.org/journal/asbcd6

80

files. These three databases were used to test the post-hoc curation of genetic part information.

The general pipeline is described below and then the examples of the curation being applied to

each of the databases.

5.1 Post-Hoc Curation Pipeline

The post-hoc curation pipeline (Figure 5.1) is made up of three sub-workflows. There is the

creation of a sequence library to use for annotating sequences pulled from records, the sequence

extraction and annotation with components, and the extraction of descriptors.

Figure 5.1: Post-hoc Curation Pipeline. The pipeline has three sub-workflows: Sequence library
curation, Sequence extraction and annotation, and description extraction. Together these three
workflows lead to genetic part records that have well annotated sequences, and machine read-
able metadata. Sequence Library Curation requires manual sequence extraction from papers with
sequence libraries (e.g. a promoter library being generated). These sequences are then used to
annotate sequences extracted from a record of interest (e.g. an ACS paper or iGEM registry). The
record of interest is also mined for key words such as species names and cell lines. These are then
grounded to machine readable terms and linked to the extracted sequences.

For the creation of a sequence library, papers are used that contain many sequences. These

papers have their information manually entered into spreadsheets that are converted to SBOL via

the Excel-to-SBOL Converter described in Chapter 4. These SBOL documents together form a

81

library for annotating sequences used by the sequence extraction workflow.

The sequence extraction workflow varies somewhat depending on the record from which

the sequence must be extracted. Note, a single record may contain one or more sequences. In

the iGEM and Addgene case, it is much easier then in the ACS dataset as sequences in iGEM

and Addgene are more separated, standardized, and machine readable. For the ACS dataset,

the sequences have to be extracted using machine learning and often require parsing PDF files.

Regardless of how the sequence is extracted, once it is extracted, the sequence is run through

SYNBICT [181]. SYNBICT is a tool that performs automation-assisted annotation, curation, and

functional inference for genetic designs. We use it to sequence match a library of parts against a

test sequence to allow hierarchical annotation of sequences with the previously prepared sequence

library. For each of the three case studies the same sequence libraries are used. Resources mined

for yeast parts included the Yeast Toolkit [124], Pichia Toolkit [162], and a combinatorial design

paper [238]. Parts for Gram-negative bacteria are drawn from the CIDAR MoClo kit [96], the

CIDAR Extension Kit Volume I [145], the Voigt Lab terminator collection [43], and the Bascillus

subtilis collection [141]. The data mined from these papers is input into Excel spreadsheets and

converted to SBOL using Excel2SBOL (https://github.com/SynBioDex/Excel-to-SBOL). The

collections were uploaded to a SynBioHub instance and used as the feature libraries in SYNBICT.

The extraction of the descriptors is the most non-standard part of the workflow. It gen-

erally requires a lot of manual input. The idea is to go from free text fields to key terms (e.g.

the description: “This part is designed for use in E. coli” to “Target Organism: E. coli”). The

next step is the grounding of the terms to ontologies, e.g. “Target Organism: E. coli” to “Target

Organism: https://identifiers.org/taxonomy:562”. The grounding of terms ensures that dis-

parate spellings (e.g. E. coli, E coli, and Escherichia coli) all are seen as the same by the computer.

Additionally, grounding to an ontology can provide hierarchical relationships allowing searches for

parent terms (e.g. Enterobacteriaceae) and child terms (e.g. Escherichia coli O1:HNT).

Finally, one or more records are created in a database like SynBioHub [138]. For example,

a single ACS paper can be seen as a collection with properties based on the grounded terms and

https://github.com/SynBioDex/Excel-to-SBOL
https://identifiers.org/taxonomy:562

82

component items based on the annotated sequences. For an iGEM or Addgene record, a single

component may be created with grounded tags added as properties to the component. How the

same workflow can be applied to different data sets is discussed in more detail below.

5.2 Example Applications of the Post-hoc Curation Pipeline

5.2.1 iGEM

The work described here, as well as a more in depth analysis of the data set, was origi-

nally published as [130]. One of the largest and oldest repositories of parts is the iGEM Registry

of Standard Biological Parts (http://parts.igem.org/). Since its inception in 2003, the iGEM

competition has followed principles aimed at the advancement of synthetic biology via education,

competition, and development of an open and collaborative community [195], including the submis-

sion of parts created by iGEM participants to the iGEM Registry. There are now tens of thousands

of parts, the vast majority of which use the BioBricks format and are thus, at least in principle,

able to be composed in a modular fashion [190]. Due to the wealth of genetic parts deposited in

the registry and the role of the iGEM Registry in training undergraduate synthetic biologists, the

registry has been used by some as an indicator to measure the progress of the field of synthetic

biology [100]. When parts are found and reused they can significantly reduce the cost of creating

new circuits [215]. While there is part reuse, a small core set of parts accounts for most of the

reuse, and this core set remains constant from year to year [193]. Likewise, while it is possible

to create full circuits based only off of registry parts [12], finding reliable parts is difficult. The

large number of parts, a variety of issues around assembly methods, and issues with quality control

mean that there is uncertainty with part reuse, leading many iGEM teams to choose to create and

submit new parts rather than reuse old ones [221]. The use of a manual submission process until

2010 and the time pressure associated with the competition contribute to the variation of quality

level in documentation and annotations [144]. There have also been a number of reviews of the

iGEM data set that highlight issues such as: the lack of part reuse [168, 170, 221], the lack of

http://parts.igem.org/

83

annotation of sub-sequences [168], incomplete or inaccurate part descriptions [72], and lack of part

validation [115, 221]. However, of these papers only [168] provides in depth statistics about the

iGEM data set and an attempt to create a library of basic iGEM parts, though it does not analyze

the descriptions of the parts.

To address these issues with the iGEM data set, the post-hoc curation pipeline was used

to create a new iGEM library and analyze the existing one. The aim was to create a library of

thoroughly documented, well annotated, and easily searchable basic parts from the iGEM data set.

The aim of a library is to be a set of parts that are well documented enough that researchers can

make judgements about the usefulness of components to their work with confidence. Additionally,

the library must be encoded in such a way that even at a large scale the appropriate parts, if they

exist, can still be easily found. To this end, data records must be machine readable. Machine

readability also increases the ease of data set curation [39].

As the first step in the post-hoc curation pipeline, the registry was converted into SBOL [180]

data format.

To convert the iGEM Registry to SBOL a simple automatic conversion method was used:

(1) Each part is converted into a ComponentDefinition.

(2) The Sequence Ontology (SO) role for that part is mapped from the iGEM part type

(3) A composite part composed of other BioBricks is constructed using Component instantia-

tions.

(4) A composite part not composed of BioBricks, but rather simply described with annotations

has these annotations converted into SequenceAnnotations with roles.

(5) The categories are converted into Collections. Each sub-category is mapped into a member

of its parent category. All ‘top-level’ categories are mapped into a category collection, and

this collection and all iGEM parts are members of an iGEM collection. Each collection

that a part is a member of has been annotated as an iGEM annotation within the SBOL

84

record for the part.

(6) Most fields available in the iGEM SQL database that have not mapped as above have been

mapped into iGEM custom annotations. There are a few exceptions, but these are mostly

fields that map into some other table that is not currently accessible. One example is the

GroupId field that somehow maps to a Group that provided the part, but this mapping has

not been shared by iGEM. Further annotations include descriptions from the registry page

being added to the SBOL component via dcterms:description and sbh:mutableDescription.

The result of this procedure was: 372 Collections, 38,365 ComponentDefinitions, and 36,595

Sequences. These data were uploaded to https://synbiohub.org.

5.2.1.1 Pipeline Application

Sequence Extraction and Annotation

Due to the conversion to SBOL, the sequence extraction and annotation was straightforward.

The SYNBICT sequences to features module was used to annotate the ‘basic unique’ ribosome

binding sites with a minimum feature length of 10 bp. An overview of the annotations was created

using a Python script (https://github.com/JMante1/iGem-Data-Cleaning).

Descriptor Workflow

As the description fields were unstructured and varied widely, expert manual curation was

used for the grounding of terms. For expert curation, an abbreviated version of the SBOL version of

the iGEM data set was used. It contained only parts classified as ‘basic unique’ by earlier analysis.

The data was converted to a CSV format with the fields/properties being converted to columns.

The columns included: long description, short description, notes, and source as the free text fields.

The CSV was viewed and analyzed using OpenRefine https://github.com/OpenRefine. This

allowed the reading of all of the descriptions to compile a list of all mentioned species. This list

was then used together with the text filter functionality to count the number of rows/parts that

contained mentions of a particular species. The ability to flag rows meant any particularly silly

https://synbiohub.org
https://github.com/JMante1/iGem-Data-Cleaning
https://github.com/OpenRefine

85

descriptions were flagged for further analysis and discussion.

For the analysis of the difference between real and spurious parts, a sample of 400 random

ones of each was taken. The random selection was done by using Excel to generate a random

number column and sorting based on that. The first 400 ‘real’ parts and first 400 spurious parts

were then selected for the analysis.

5.2.1.2 Results

Sequence Extraction and Annotation

SYNBICT was used to annotate ‘basic unique’ Ribosome Binding Sites (RBS) (Table 5.1).

SYNBICT uses an exact match algorithm. Whilst most RBS parts were not annotated (92%), 8%

were annotated, and seven sequences even had multiple annotations. There are nine annotations

for a single sequence labelled as an RBS, which is surprising as RBS are typically quite short.

Inspection of this sequence reveals that it is a composite rather than an RBS. The un-annotated

RBS sequences may be unique new parts, or may indicate a need to expand the libraries used for

SYNBICT annotation. Further manual inspection of these is required to determine whether they

are suitable for adding to the annotation library.

Table 5.1: SYNBICT annotations seen in the ‘basic unique’ ribosome binding sites. Note that most
RBS seem to not be annotated (92%), but 4 RBS sequences have 9 annotations.

Number of Annotations per Sequence Frequency

0 411

1 30

2 2

3 1

9 4

Total 448

Parts in the ‘basic unique’ sequence set that had at least one feature annotated by SYN-

BICT were further inspected (see Table 5.2). Several annotations were used multiple times (e.g.,

BBa B0034 was used 13 times). It seems that BBa B0034 was cut out in several different ways (i.e.

86

there was more or less flanking DNA taken across different uses of the part) as the percentage cover

of the annotation was quite high. On the other hand J23100 was used 12 times but had a very

low percentage cover so is likely used in combination with other parts/features, some of which may

be unknown. It is important to note that there are also non-RBS type annotations. In particular

J23100 (promoter), the CamR Terminator, and the CamR Promoter stand out as not being RBS.

This suggests that there was mislabeling of the original iGEM part type.

Table 5.2: SYNBICT annotations seen in the ‘basic unique’ ribosome binding sites. Note that most
annotations are reused which suggests that some of the ribosome binding sites are not as unique as
expected. Additionally, the annotation names suggest that not all of the sequences annotated are
RBSs, e.g., finding the CamR terminator in an RBS is unexpected. The “Number of Uses” is how
often the annotation is used across the corpus. The “% Cover” is the fraction of the sequence that
the annotation covers.

Annotation Name Number of
Uses

Annotation
Length

% Cover Min, Aver-
age, Max

BCD12 2 83 0.91, 0.93, 0.95

B0034m 3 20 0.69, 0.73, 0.8

BCD2 3 83 0.91, 0.95, 0.99

BCD8 2 83 0.91, 0.93, 0.95

BBa B0034 13 11 0.17, 0.49, 0.85

BCD14 1 83 0.99, 0.99, 0.99

BCD13 1 83 0.91, 0.91, 0.91

B0033m 2 19 0.7, 0.75, 0.79

BBa B0034 2 11 0.23, 0.51, 0.79

B0015 3 128 0.3, 0.3, 0.3

BBa B0011 4 45 0.1, 0.1, 0.1

BBa B0012 2 40 0.09, 0.09, 0.09

T7 consensus 1 22 0.27, 0.27, 0.27

UTR1 1 33 0.4, 0.4, 0.4

J23100 12 34 0.01, 0.02, 0.04

B0032m 2 21 0.72, 0.77, 0.81

ChlorR 3 659 0.29, 0.3, 0.3

BBa B0057 3 41 0.02, 0.02, 0.02

CamR Promoter 6 104 0.05, 0.05, 0.05

BBa B0062-R 3 40 0.02, 0.02, 0.02

CamR Terminator 3 108 0.05, 0.05, 0.05

BCD16 1 83 0.91, 0.91, 0.91

Average 3.3±3.2 83±133 0.44±0.37,
0.48±0.37,
0.52±0.39

87

Descriptor Workflow

Expert annotation was used to process the part descriptors found in the ‘basic unique’ iGEM

data sets. Despite some sequences being long enough to be plausible for a part type, it might

not actually be a plausible sequence. Deciding what kind of sequence is plausible is difficult, but

looking at the sequence description fields often gives a better idea. For example, at the time of

the iGEM to SBOL conversion BBa K1740001 has a sequence of length 672 base pairs, however

the description fields say ‘This is a test’, ‘none’, and ‘.’ which suggests that the sequence likely is

not ‘real’. For this reason, a mostly qualitative analysis was carried out to identify patterns in the

sequence descriptions which could form the basis for further curation efforts. The main observations

are as follows:

• Sequence descriptions and the relevant information is split across four fields: long descrip-

tion, notes, source, and description (Table 5.4). The split is by no means equal though with

7530 (39%) having no text in at least one of the fields. The length of the text varies widely

between parts and does not necessarily correlate with valuable information (for example,

a single Addgene reference conveys much more than ‘test test test test’). Additionally, the

descriptions do not appear to improve over the years, or over the months per year as the

iGEM jamboree gets closer (see the Appendix A for the related figures).

• Many of the parts are temporary/test parts. They are often indicated via descriptions

including ‘test’, ‘temporary’, ‘none’, ‘kill’, ‘bla’, ‘blah’, or a keyboard smash.

• Subheadings have been implemented within single fields to break out information more

clearly such as: notes, references, source, see also, design notes, mutagenicity, assembly,

and functional parameters.

• In many cases a lot of information is present in descriptions (e.g., source organism, target

organism, paper citations, assembly methods) however how it is presented varies widely

(e.g., species information may include genus, species, or be a common name, as shown in

Figure 5.2).

88

• There are many descriptions stating they will be edited or finished later when more infor-

mation is known/gathered, or the part has been tested.

To compare such spurious parts to ‘real’ parts, 400 of the spurious parts were randomly

selected and 400 of the ‘real’ parts were randomly selected (full list is given in the supplemental).

A significant difference was seen in the length of descriptive fields between the two sample groups.

The ‘real’ parts had more information in each of the fields and generally had significantly longer

sequences too (Table 5.3). These results are not surprising as part of the method of determining

whether a part is ‘real’ is looking at the description provided. Additionally, spurious parts are

expected to generally have shorter made up sequences. SYNBICT was used to annotate the se-

quences for the two groups. In the ‘real’ group, the average number of annotations was 0.340 ±

1.133 per sequence (i.e. on average 0.340 (± standard deviation) sequence library parts are found as

sub-sequence per iGEM sequence), whilst in the spurious group it was 0.375 ± 1.246 per sequence.

The student’s t-test indicates no significant difference between the two groups with a p-value of

0.678. The lack of difference in annotation may be explained by the annotation library used in

SYNBICT (a larger set of libraries might have led to more annotations). It should be noted that all

parts selected had no annotations by the authors so the lack of significant difference between ‘real’

and spurious annotation number does not indicate a lack of correlation between ‘good’ descriptions

and ‘good’ sequence annotations in general.

Long Description Notes Sequence Length Description

‘Real’ Sample 264 ± 320 117 ± 208 1028 ± 2298 32 ± 20

Spurious Sample 30 ± 69 11 ± 43 629 ± 1216 23 ± 21

p-value <0.00001 <0.00001 0.00234 <0.00001

Table 5.3: Comparison of a random sample of 400 ‘real’ vs 400 spurious parts. The length of each
of the descriptive fields is given in characters (mean ± standard deviation). The p-value for the
student’s t-test between the two groups is given. Each of the fields show a significant difference
between the ‘real’ and spurious group at the 0.05 alpha level.

89

Figure 5.2: This is a word cloud of ‘species’ manually extracted from the long description of basic
iGEM parts. The frequency of a genus name versus a species name were counted separately to
account for E. coli or Clostridium sp. There are 271 species (not including ‘No species’) across the
data set. However, of the 19825 parts 10978 have no species mentioned (55%). On average every
species is mentioned by 41 ± 159 parts.

Table 5.4: Statistics about the length of sequence description fields for the iGEM ‘basic unique’ data
set. There are 4 sequence description fields: Long Description, Notes, Source, and Description. The
‘Fields Std.Dev.’ column indicates the standard deviation between the length of the four description
column fields, and ‘Fields Mean’ calculates the mean length of the four fields.

Long Description Notes Source Description Fields Std.Dev. Fields Mean

Mean 263 102 67 31 135 116

Std.Dev. 736 218 149 20 371 210

90

5.2.1.3 Challenges

While the registry is a very large and well known repository of synthetic biology information,

it does have several design flaws. The flaws which hinder machine readability, and the curation

of an iGEM library are: 1) its over-reliance on free text, 2) insufficient part provenance, 3) part

duplication, 4) the lack of part removal, and 5) insufficient continuous curation. To automate

post-hoc curation these five concerns must be considered and addressed. We suggest a submission

structure to nudge participants towards the submission of well characterized parts.

5.2.2 ACS Dataset

This work was originally presented in [129]. ACS Sytnethic Biology (https://pubs.acs.

org/journal/asbcd6) is a peer-reviewed scientific journal published by the American Chemical

Society. It started accepting articles in 2011. It is a major publishing outlet in the synthetic biology

community with special issues for synthetic biology conferences (such as IWBDA, SEED, and the

International Meeting on Synthetic Biology), topics (e.g. cell free systems, genome engineering,

and circuits in metabolic engineering), and geographical overviews (e.g. Europe and Asia).

The ACS Synthetic Biology corpus consists of all the articles that have been published in

ACS Synthetic Biology up to November 2019. These articles were provided to us in annotated

JATS XML format, which includes a rich set of metadata, the full article text, and structured

references to cited papers.

Additionally, supplemental files are parsed to identify and extract genetic sequences of parts.

From the 1597 articles (these were all articles published since the inception of the journal at the

time of our analysis), there is at least one supplemental file available for 82 percent of the articles,

and there are 10,070 supplemental files in total. These supplemental files are provided in various

formats ranging from structured data, such as GenBank files, to PDF documents. The top 10 most

frequent file types are shown in Table 5.5.

Whilst parts databases are recognized as key for information exchange, many of the databases

https://pubs.acs.org/journal/asbcd6
https://pubs.acs.org/journal/asbcd6

91
Rank File Type Count Rank File Type Count

1 PDF 1434 6 SBML 475
2 TSD 1091 7 PNG 403
3 XML 1079 8 JPG 337
4 GenBank 707 9 TXT 330
5 HTML 499 10 JS 325

Table 5.5: Top 10 most common supplemental file types

have been ineffective in communicating data and metadata (like function, intended host, and as-

sembly method). Thus, databases are rarely used in genetic design, especially for organisms that

are not E. coli. This leaves the field in a state where relevant part performance data is distributed

among results and methods sections, paper supplemental files, and tables of sequences — shift-

ing the work of a genetic designer from design to searching through disparate sources for part

information.

The aim of using the annotation pipeline on the ACS corpus was to combine the richness of

information in literature with the searchability and standardization of databases. This will save the

genetic designer search time and reduce the risk of missing valuable information about parts. To

do this the ACS Synthetic Biology corpus is semantically annotated and sequences are extracted

from the papers and supplemental files.

5.2.2.1 Pipeline Application

For the ACS Dataset an article is the record from which descriptors and sequences will be

extracted (as per the pipeline in Figure 5.1).

Descriptor Workflow

The metadata and citation elements of the structured article file are harvested and converted

into SBOL-compliant RDF/XML with Dublin Core annotations suitable for ingestion into SynBio-

Hub. Among the steps taken during this process is the employment of Python scripts to match

article DOIs to corresponding PubMed IDs. Additionally, various natural language processing

(NLP) techniques to extract salient content from published articles. Each article is provided in the

92

Journal Article Tag Suite (JATS) XML format, and it is parsed to extract text and relevant

metadata. Each supplemental file is also parsed to extract genetic sequences of parts. The article

text is then processed using named entity recognition (NER) to identify terms [151, 51, 2], re-

lation extraction (RE) to identify relationships between terms [228, 110], and topic modeling

(TM) to identify topics [219, 104]. These discovered terms and concepts are then used to tag the

article, providing a way to link the context of each article to data elements.

Sequence Extraction and Annotation

The supplemental files are processed as well as the main article text. Sequences were extracted

using regular expressions looking for a combination of ATGC and spaces that is longer than 4

characters (to rule out cat, act, etc). The sequence extraction process found at least one sequence

from 8 percent of the supplemental files, and 89,620 genetics sequences were found in total. Of

these 89,620 entries, 1,732 sequences are skipped due to blank entries or a lack of publications to

match them to. As a result, only 87,888 sequences are processed.

Database Upload

For every sequence, an annotated SBOL Componentdefinition is created which is linked to

an SBOL Collection object for the paper it comes from. The SBOL Collections are all uploaded as

part of a single ACS Collection in SynBioHub.

5.2.2.2 Results

The ACS Synthetic Biology corpus extracted sequences are converted to SBOL so they can

be annotated using SYNBICT (https://github.com/SD2E/SYNBICT).

The annotation of genetic parts was hindered by the accuracy of sequence scraping. Table 5.7

indicates that some file types do better for scraping than others. Notably PDFs are a very popular

supplemental type (93 percent) for presenting sequences, but they fair poorly when automating

sequence extraction for annotation. This is partially due to the fragmentation of sequences (any

spaces or numbers between rows of a sequence will lead to a sequence being split into several

sequences by the scraping method as indicated by the shorter average sequence length). GenBank

https://github.com/SD2E/SYNBICT

93

files put into PDFs were found particularly difficult to scrape. However, when GenBank files are

provided in their native file format, they are more effectively annotated. The use of SBOL and

FASTA standard formats also significantly increases the machine readability of sequences. SBOL

shows annotation within shorter sequences, which may be indicative of the better coverage of the

part libraries in these formats or the shorter sequences due to sequences being of parts not whole

constructs. The top annotations for the sequences are shown in Table 5.8.

Using the descriptor workflow, the paper “entities” were also extracted. For the initial round

of NER, standard biological entity categories (e.g., genes and chemicals) are used, since there is

no labelled dataset for synthetic biology entities. Results from this initial round are reviewed

and corrected by domain experts to create a more refined dataset with entities more specific to

synthetic biology that can be used to fine tune the NER models. Named entities expected to be

detected within synthetic biology articles are also added to the articles as suggested annotations,

to be confirmed by expert annotators in order to facilitate the creation of gold-standard synthetic

biology-specific training data. Table 5.6 shows the entity types, total number of annotations and

average annotation per document for each entity type over the ACS Synthetic Biology dataset.

The table also shows the total number of entities and the unique number of mentions annotated

by the NER component. Table 5.9 shows the top ten terms identified by the NER component

from the ACS Synthetic Biology dataset for each of the entity types. These results suggest that

while NER is not perfect, it is able to identify many of the entity types correctly. The next step in

the process is to refine the model based on human corrected annotations. For example, the NER

system identified LB and M9 as Cell Line whereas they are formulations of media, so therefore

should probably be annotated as Chemical.

5.2.2.3 Challenges

There are two main issues with the application of the pipeline to the ACS Dataset: the

requirement of expert curation and the difficulty of extracting sequences from the ACS corpus.

The first problem is difficult to address, though improved machine learning should decrease

94
Entity Type Total Annotations Average per Document

Cell Line 12,084 13.47
Chemical 86,180 96.07
Gene 169,061 188.47
Species 31,785 35.43

Total Number of Mentions 299,110
Number of Unique Mentions 43,439

Table 5.6: Entity statistics from named entity recognition component. Entity Type is the entity
category. Total Annotations are the number of entities extracted from the dataset. Average per
Document is the average number of entities per document over all the documents in the ACS
Synthetic Biology dataset. Total Number of Mentions is the total number of entities, and Total
Number of Unique Mentions are the number of unique mentions identified in the ACS Synthetic
Biology dataset.

File Type No. of Sequences % of Sequences
Annotated

Avg. Sequence
Length

Avg. Annotated
Sequence Length

FASTA/TXT 679 0.88 397 5014
GenBank 686 79.88 4419 4286

XML/SBOL 5098 26.19 399 988
PDF 81426 0.38 56 1829

Total 87888 2.5 113 1825

Table 5.7: Annotation of sequences from ACS Synthetic Biology Supplemental Files. There are
different supplemental file types used with the majority (93 percent) being PDFs. Unlike FASTA,
GenBank, and SBOL file types, PDFs need to be scraped to extract sequences. The lack of
standard page breaks and formatting of the sequence leads to errors in sequence extraction meaning
a single sequence is often read in as several shorter fragments. This is noticeable as the average
sequence length for PDFs is significantly lower than the other file types. The other feature of
note is that the percentage annotation is much higher for FASTA, GenBank, and SBOL, which are
standard sequence formats. Of these, SBOL shows annotation within shorter sequences which may
be indicative of the better coverage of the part libraries in these formats or the shorter sequences
due to sequences being of parts not whole constructs.

the expert annotation required over time. Additionally, continuous curation where the work is

done gradually, over time, by the experts submitting the data, rather than retrospectively should

decrease the total time required for annotation. Furthermore, making the formats more machine

readable will also improve the accuracy of computer aided descriptor annotation and grounding.

Similarly, sequence extraction would greatly improve from standardized, machine readable

sequence submission. The annotation could also be improved by having the submitting authors

check the machine annotations in a continuous manner.

95

All Promoters CDS Terminators Other

RiboJ (397) AmpR promoter (302) AmtR (173) L3S2P21 (386) RiboJ (397)

L3S2P21 (386) pCONST (288) PhlF (172) AmpR terminator (226) ColE1 (153)

AmpR promoter (302) pTet (157) SrpR (146) BBa B0015 (214) RiboJ53 (86)

pCONST (288) pTac (123) HlyIIR (146) CamR Terminator (135) BydvJ (85)

AmpR terminator (226) pBAD (122) BetI (117) ECK120033737 (92) RiboJ51 (73)

BBa B0015 (214) CamR Promoter (116) CamR (111) L3S2P55 (86) RiboJ10 (73)

AmtR (173) pPhlF (92) AraC (107) ECK120033736 (81) RiboJ57 (57)

PhlF (172) pSrpR (73) TetR (98) ECK120019600 (79) RiboJ54 (19)

Table 5.8: Top annotations of ACS Synthetic Biology Supplemental sequences. These are the
top annotations of different SO:Role types (e.g. Promoter) that were used to annotate the ACS
Synthetic Biology supplemental sequences.

All Cell Line Species Gene Chemical
#Doc. Term #Doc. Term #Doc. Term #Doc. Term #Doc. Term
7682 E. coli 305 LB 7682 E. coli 4549 GFP 1725 glucose
4549 GFP 292 cells 2965 yeast 1970 Cas9 1391 peptide
2965 yeast 185 HEK293T cells 1202 S. cerevisiae 1298 mCherry 1206 amino acid
1970 Cas9 181 BL21 822 human 1200 dCas9 1180 amino acids
1725 glucose 180 MG1655 564 B. subtilis 1013 CRISPR 835 glycerol
1391 peptide 172 M9 430 P. putida 938 LacI 829 kanamycin
1298 mCherry 125 cultures 367 Escherichia coli 839 sfGFP 789 NaCl
1206 amino acid 118 KT2440 332 C. glutamicum 786 YFP 781 peptides
1202 S. cerevisiae 100 HeLa cells 321 S. oneidensis 748 TetR 737 tetracycline
1200 dCas9 96 strains 299 Synechocystis 673 RFP 657 ampicillin

Table 5.9: Top ten terms extracted from the ACS Synthetic Biology dataset by the NER component
for each entity type (Cell Line, Species, Gene and Chemical) and across all of the entity types (All).

96

5.2.3 Addgene

Addgene is a global nonprofit plasmid repository (https://www.addgene.org/). It has as its

mission: “Accelerate research and discovery by improving access to useful research materials and

information”. They provide their materials in a searchable database, and sequence all items in their

repository for quality control. To submit new plasmids to the repository, researchers can either use

a graphical user interface or upload their parts via a spreadsheet (similar to the idea described in

Chapter 4). The use of a spreadsheet standardizes what information is collected, reduces free text,

and restricts information expression.

The post-hoc curation pipeline was applied to the Addgene data set to look for frequent sub-

component use, analyze the effectiveness of Addgene’s spreadsheet design, and make the Addgene

library more accessible to design tools such as iBioSim and SBOLCanvas.

5.2.3.1 Pipeline Application

For the Addgene Dataset, a plasmid is the record from which descriptors and sequences will

be extracted (as per the pipeline in Figure 5.1)

Descriptor Workflow

For the descriptors, all 181,796 plasmid records were pulled as HTML, of these 50,953 were

successfully scraped. The plasmid title and Addgene id were extracted together with publication

DOI, sequence, and depositing lab. Any further headings in the section below ordering are extracted

as heading:sub-heading:term (Figure 5.3). Each of these are then added to an SBOL document

using the Addgene namespace and a property name based on the sub-heading (with spaces, 3, and

5 re-coded to “ ”, “three”, and “five”, respectively).

After the initial descriptor pass a list of all Addgene predicates was created (see Table 5.10),

as well as individual CSV files for each predicate. The predicate CSVs contain all Addgene IDs and

their corresponding value for the predicate of interest. These files were used to assess the variability

of responses, and to attempt to ground the species predicate. The results of this grounding were then

https://www.addgene.org/

97

Figure 5.3: Example of an Addgene plasmid page. For the descriptors plasmid records were pulled
as HTML. The plasmid title (pENTR221-H1-sgGFP1-U6-sgGFP2-7SK-sgGFP3) and Addgene id
(87906) were extracted together with publication DOI, sequence, and depositing lab. Any further
headings in the section below ordering are extracted as heading:sub-heading:term. For example,
backbone:vectorBackbone and growthInBacteria:copyNumber.(This page can be found at: https:
//www.addgene.org/87906/)

https://www.addgene.org/87906/
https://www.addgene.org/87906/

98

applied by adding a custom annotation called SBH:Source Organism to the SBOL files (Table 5.11).

The code for this can be found at https://github.com/JMante1/Addgene-Annotation.

Sequence Extraction and Annotation

As part of the HTMLhtml parsing the sequence links were extracted. The first of these links

is used to obtain a GenBank file which can then be converted to SBOL using the SBOL Validator.

SYNBICT is then used to annotate the sequences with subparts.

5.2.3.2 Results

Descriptor Workflow

Fifty-two different descriptor properties were seen (Table 5.10), however, some of these are

plurals of each other. For example: articleCitingThisPlasmid vs articlesCitingThisPlasmid. The

presence of the different descriptors varied per record with properties like bacterialResistances being

seen on every record and addgeneNotes only seen on 390 of the 50,953 (0.77%).

Some properties were often seen together such as fiveSequencingPrimer, and threeSequenc-

ingPrimer (co-variance of 0.1338). On the other hand, some properties were generally not seen

together such as purpose and termsAndLicenses (co-variance of -0.0809).

Most of the work on descriptors was done looking at the “species” property. 353 distinct

species were seen in the annotations. An additional 74 were considered ungroundable. Terms were

ungroundable when they were too vague (e.g. hamster), pointed to multiple species (e.g. C. griseus),

or did not contain species information (e.g. metagenomic). Variation in species entries were seen

due to punctuation (e.g. Synechocystis PCC 6803, Synechocystis PCC6803, Synechocystis sp.

PCC 6803, and Synechocystis sp. PCC6803), not fully writing out the genus name (e.g. B.

taurus (bovine) vs. Bos taurus), adding a common name to the end (e.g. A. Victoria (Jellyfish)

vs. A. Victoria), adding protein information (GFP is from Aequorea victoria), and mis-spellings

(e.g. Aequorea victoria vs. Aequoria victoria). 523 of the 50,953 records (10.26%) had multiple

species in the “species” property. The top 50 species annotations and their occurence are shown

in Table 5.11. Interestingly, synthetic is often used. Additionally, whilst E. coli is generally used

https://github.com/JMante1/Addgene-Annotation

99
Property name Percentage Filled Number Filled

addgeneId 100 50953

bacterialResistances 100 50953

copyNumber 100 50953

depositingLab 100 50953

doi 100 50953

growthStrains 100 50953

growthTemperature 100 50953

plasmidTitle 100 50953

refBib 100 50953

refMethod 100 50953

vectorBackbone 100 50953

geneInsertName 99.99 50946

industryTerms 99.79 50846

vectorType 97.51 49685

academicNonprofitTerms 89.52 45615

cloningMethod 88.03 44853

species 87.78 44725

purpose 80.57 41054

fiveSequencingPrimer 73.03 37211

insertSizeBp 55.83 28448

backboneSizeWoInsertBp 55.77 28414

fiveCloningSite 53.03 27020

threeSequencingPrimer 49.96 25458

threeCloningSite 49.74 25343

promoter 48.13 24526

entrezGene 46.55 23717

tagFusionProtein 39.4 20076

backboneManufacturer 38.63 19682

altName 33.91 17276

totalVectorSizeBp 32.27 16444

mutation 32.09 16353

selectableMarkers 30.52 15552

supplementalDocuments 28.29 14415

genBankID 18.38 9364

aPortionOfThisPlasmidWasDerivedFromAPlasmidMadeBy 13.19 6720

termsAndLicenses 10.27 5231

tagsFusionProteins 8.41 4285

modificationsToBackbone 7.72 3935

gRNAshRNASequence 6.42 3269

articleCitingThisPlasmid 6.19 3152

articlesCitingThisPlasmid 5.84 2976

growthInstructions 4.59 2339

addgeneNotes 0.77 390

pricing 0.26 132

storage 0.26 132

shipment 0.22 113

titer 0.22 113

volume 0.22 113

amount 0.04 19

guaranteedConcentration 0.04 19

reference 0.03 16

depositingLabs 0 1

Table 5.10: All properties scraped from Addgene. A subset of the full addgene dataset was used
(because there were errors in scraping some of the data). For the list of all Addgene IDs used see
https://github.com/JMante1/Addgene-Annotation/blob/master/Analysis/all addgene files.csv.

100

as a target organism (not what the species property indicates) the genes used generally come from

other model organisms.

Sequence Extraction and Annotation After SYNBICT annotation 346 unique sequences

were used to annotate the library a total of 98,340 times. The annotations ranged in length from

4,163 base pairs to 39 base pair. The annotations ranged from less than .01 percent to 65 percent

of the sequence. The top annotations seen are listed in Table 5.12. The number of annotations per

sequence range from 0 to 28 with an average of 1.93 and a standard deviation of 1.75. The plasmids

with more annotations are ones that were well annotated before SYNBICT annotation was run.

5.2.3.3 Challenges

Despite less free text being used (compared to iGEM and ACS) the Addgene data set still

faces issues. For some of the properties (e.g. species and growthStrains), the use of ontologies

would strengthen the data set by making it more uniform. Additionally, the use of ontologies

might standardize the way in which multiple tags are added (currently many different delimiters

are used including “;”, “:”, “&”, and “and”). An alternative solution would be to allow sub-part

annotations, as often multiple annotations are used when different parts of the plasmid are being

described (e.g. GFP came from A. victoria and Cas9 from S. pyogenes M1).

Further work should also be done on the conversion of HTML to SBOL as only 50,953 of the

181,796 (28.03%) of the Addgene records were successfully converted to SBOL.

5.3 Conclusions

The initial expectation was to produce a single reusable pipeline for the curation of data sets

as well as sets of well annotated part libraries. This was not achieved due to the variation and

intense manual curation required in post-hoc curation.

However, whilst well annotated reusable parts libraries were not achieved uses of annotations

were found. For example, BBa B0034 was a common annotation across the three data sets indicat-

ing it is used and may be reliable to reuse. This suggests that it may not be possible to judge a part

101

Ontology term Human Readable Occurance

9606 Homo sapiens 3463

32630 Synthetic 2437

10090 Mus musculus (mouse) 975

4932 Saccharomyces cerevisiae 514

7955 Danio rerio (zebrafish) 331

10116 Rattus norvegicus (rat) 270

3702 Arabidopsis thaliana 235

562 Escherichia coli 226

1314 Streptococcus pyogenes 138

6183 Schistosoma mansoni 114

7227 Drosophila melanogaster (fly) 99

9031 Gallus gallus (chicken) 98

11676 Human immunodeficiency virus 1 84

6239 Caenorhabditis elegans (nematode) 79

Ungroundable 74

37296 Kaposi’s Sarcoma Associated Herpesvirus (HHV-8) 73

4577 Zea mays 49

6100 Aequorea victoria 43

8355 Xenopus laevis (frog) 26

32644 unspecified 24

130404 Piper methysticum 23

10684 Bacteriophage PBS2 22

487 Neisseria meningitidis 20

11036 venezuelan equine encephalitis 20

1140 Synechococcus elongatus PCC 7942 18

9483 Callithrix jacchus 18

2886926 Bacteriophage P1 18

3847 Glycine max 17

9913 Bos taurus (bovine) 17

666 Vibrio cholerae 15

7049 Lampyridae 14

4952 Yarrowia lipolytica 13

693140 Tiarina fusus 13

1820202 Phagocata morgani 13

7054 Photinus pyralis 12

89184 Silicibacter pomeroyi 12

135777 Dugesia dorotocephala 12

386891 Moraxella bovoculi 12

1354672 Phagocata gracilis 12

4896 Schizosaccharomyces pombe (fission yeast) 11

28285 Adenovirus type 5 11

264483 Xanthophyllomyces dendrorhous 11

1148 Synechocystis PCC 6803 10

7159 Aedes aegypti 10

30538 Vicugna pacos 10

86600 Disocoma sp. 10

2884423 Bacillus phage PBS1 10

264 Francisella tularensis subsp. Novicida 9

4498 Avena sativa 9

272131 Nostoc punctiforme 9

Table 5.11: The top 50 species annotations seen in the Addgene descriptor analysis. The first
column gives the NCBI:txid, the next a human readable version, and the occurrence is the number
of times the label is seen. Note that a label such as Homo sapiens: A. thaliana is counted as an
occurence of Homo sapiens and of Arabidopsis thaliana.

102

Annotation
Name

Annotation Length (bp) Frequency of Occurrence

AmpR promoter 96 17299

AmpR terminator 130 14336

ColE1 763 10789

AmpR promoter 96 10679

R0010 199 10311

AmpR terminator 130 10108

ColE1 763 6077

R0010 199 4399

B0015 128 1446

BBa B0010 79 1162

ECK120051383 47 728

BBa B0062-R 40 623

BBa B0057 41 585

Bba R0040 TetR
promoter

53 578

CamR Promoter 104 454

CamR Termina-
tor

108 440

SpecR Promoter 133 435

araC 878 418

URA3 terminator 77 350

ECK120034551 52 336

URA3 terminator 77 304

KanR promoter 147 289

CmR 659 254

ECK120029600 89 244

CamR Promoter 104 200

BBa B0053 71 195

B0015 128 194

No DisplayID 74 191

Tagtef1 238 189

L3S2P21 60 184

CmR 659 158

BBa B0011 45 122

LEU2 Promoter 647 121

BBa B0010 79 118

AOX1 terminator 246 117

ECK120051382 63 116

TetR 623 104

Bba R0040 TetR
promoter

53 102

pBAD 330 100

ECK120051383 47 94

KanR promoter 147 91

KanR 815 88

PTac 70 78

BBa B0062-R 40 77

BBa B0057 41 75

L3S3P21 52 68

Tagtef1 238 64

AmpR 857 63

tSNR52 74 61

BBa B0011 45 60

Table 5.12: The top 50 sequence annotations seen after annotation with SYNBICT. Note that
repeated names can indicate the same name was given to two different sequences e.g. that there
are two different AmpR promoter sequences found.

103

as reliable or not depending on the number of annotations from the part library. However, a part

from the part library may be seen as reliable if it is used to annotated several Addgene plasmids,

which are known implementations.

Additionally, the post-hoc curation process did give insights into the challenges of post-hoc

curation and ways in which it could be made easier. Additionally, it provided information on the

metadata contained in three repositories that are very important to synthetic biology. Knowing

what information to encode, together with how to make the information more machine readable

will help when designing new information intake systems. Such systems may incorporate curation

during information input, or at least ensure the information is easier to curate post-hoc.

Chapter 6

A Structure for Integrated Curation

As scientific output continues to grow at phenomenal rates [120], it is becoming more chal-

lenging to keep track of all relevant advances in a field. The sheer volume of work, as well as the

variety of publication venues (the range of journals, conferences, and languages) make it easy to

miss a single piece of scientific work. In 2000, it was estimated that to keep up with breast cancer

research alone, 130 different journals would need to be subscribed to, and more than 27 papers

would need to be read per day [8]. Several solutions have been proposed to address this problem

including: subject or object specific databases of curated ‘facts’ [8, 47, 101, 85], Structured Dig-

ital Abstracts (SDAs) [40, 126, 70, 86], and interlinking of data with articles [1]. Each of these

solutions makes use of advances in computer science to make articles, and the information they

contain, more machine readable and thus, crucially, more machine findable. However, each of the

solutions also propose a post-hoc form of curation where the creation of additional facts, abstracts,

and links occurs at the time of publication, or even after an article has been approved by reviewers.

The use of machine learning to make ‘fact’ extraction automatic and quick is suggested based on

the PDF submitted for publication. Yet, based on the issues with post-hoc PDF curation, outlined

in Chapter 5, and the increasing integration of digital technology in day-to-day research, we suggest

considering building more machine readable papers from the ground up. Such ‘future’ papers may

start to be assembled as soon as research commences.

A ‘future’ paper might contain links to several specialist repositories (see Figure 6.1). Each

repository can store aspects of the information discussed in the paper itself including: sequences,

105

models, experiments, computer code, and the method. Each repository can be easily searched and

contains data records with metadata specialized to the type of information stored in the repository.

The cross-linking with the paper then allows the specialized knowledge to be placed in a wider

context. This structure might also allow metadata from specific repositories to be used to search

for and find a particular paper. Yet, for repository metadata to make finding a paper easier, curation

must take place. For example, a sequence file that contains information about whether the sequence

works in eukaryotes or prokaryotes is both easier to find in the database and can provide the tag

organism:eukaryote or organism:prokaryote for the paper to be found under. However, at the time

of sequence submission, authors might not remember to add eukaryote or prokaryote tags to their

sequences. Curation can help prompt authors to remind them of the useful pieces of information

they may have forgotten to add. For curation to be possible, standards are required.

Figure 6.1: The Elements of an Interactive Paper are shown. In blue the names of the different
data types, in green the possible research pipeline sources of the data, and in orange repositories
where such data might be stored.

Standards may be either de facto or de jure. A de facto standard is one that is not explicitly

stated, but it is created by the nature of data collection and/or storage. For example by providing

106

submission via a spreadsheet, Addgene acts as a de facto standard despite not explicitly stating

anywhere that it is a standard. A de jure standard is and explicitly stated or codified standard. For

example, Python is a de jure standard with many explicit rules to follow for something to be a valid

Python file. The standard type can also be classified based on what it regulates, i.e. data encoding,

data content, or a mixture of the two. Languages such as SBOL and programming languages are

encodings in the same way a file format such as CSV or docx is. They provide rules about how

data should be written and what kind of data can be stored (e.g. no JPEGs) but not what

data is stored. On the other hand, metadata and minimum information standards provide rules

about what information a data record can, or must, contain. For example, MIRIAM (Minimum

Information Required In the Annotation of Models) provides a list of properties for models

such as metadata [160]. There are standards that provide a combination of encoding and data

content standards. This generally happens with de facto standards, where a tool is importing a

standard in the way the data is being collected. Such a tool may have required fields, and convert

the input into a standard encoding. In effect, Excel template sheets for the Excel-SBOL Converter,

create both a data content standard, as well as use the SBOL encoding standard. The issue with

de facto standards is that they are often less machine readable than de jure standards as they are

a result of tool development rather than data management considerations. To prevent the pitfalls

observed with the de facto iGEM and Addgene data standards (Chapter 5), and to align with the

goal of findable components, we outline a metadata standard for SBOL data. Then we indicate

how this standard can, together with SynBioHub plugins and the Excel-SBOL converter, be part of

a research workflow with integrated curation. Finally, we examine factors preventing the workflow

from being realized, both missing links and researcher reticence.

6.1 The SBOL Data Content Standard

The SBOL Data Content Standard (SDCS) is based on the patterns observed while cu-

rating the iGEM, Addgene, and ACS data sets (Chapter 5), the needs of the Excel-SBOL Converter

(Chapter 4), and the aim of supporting better search functionality (for example via search plugins

107

as mentioned in Chapter 3).

The first draft of SDCS is shown in Table 6.1. The table contains the property and value

type expected for a range of properties based on looking at various existing data sources. The data

source that suggested the property is shown in the column titled: “Source/Reason”. For example,

GenBank ID is useful for cross-linking with the GenBank database, whilst promoter strength was

something often mentioned in the iGEM description fields. For properties that have names in

other databases, those names are listed in the “Same As” column. For example, Source organism

is the same as the Addgene term Species and the UniProt term Organism. Generally, the chosen

properties are not free text to limit the inputs. However for some, such as Cloning Method, free

text is used as there is no obvious ontology to use. Hopefully, as the standard continues to be used,

the cloning methods can be summarized and grounded to machine readable terms.

108

T
ab

le
6.

1
:

P
ro

p
os

ed
S

B
O

L
D

at
a

C
on

te
n
t

S
ta

n
d

ar
d

.
T

h
e

ta
b

le
co

n
ta

in
s

th
e

p
ro

p
er

ty
an

d
va

lu
e

ty
p

e
ex

p
ec

te
d

fo
r

a
ra

n
g
e

o
f
p

ro
p

er
ti

es
b

a
se

d
o
n

lo
ok

in
g

at
va

ri
ou

s
ex

is
ti

n
g

d
a
ta

so
u

rc
es

.
T

h
e

d
at

a
so

u
rc

e
th

at
su

gg
es

te
d

th
e

p
ro

p
er

ty
is

sh
ow

n
in

th
e

co
lu

m
n

ti
tl

ed
:

“
S

o
u

rc
e/

R
ea

so
n

”
.

N
a
m

e
D

e
s
c
r
ip

t
io

n
V
a
lu

e
T
y
p
e

N
a
m

e
s
p
a
c
e

T
e
r
m

S
a
m

e
A

s
G

e
n
B

a
n
k

ID
T

h
e

G
e
n
B

a
n
k

ID
U

R
I

G
e
n
B

a
n
k

g
e
n
b
a
n
k
Id

A
d
d
g
e
n
e

ID
T

h
e

A
d
d
g
e
n
e

p
la

sm
id

C
a
ta

lo
g

N
u
m

b
e
r

U
R

I
A

d
d
g
e
n
e

a
d
d
g
e
n
e
Id

E
n
tr

e
z

ID
E

n
tr

e
z

G
e
n
e

ID
U

R
I

E
n
tr

e
z

e
n
tr

e
z
ID

iG
E

M
ID

B
io

b
ri

c
k

N
a
m

e
U

R
I

iG
E

M
ig

e
m

ID
A

n
ti

b
io

ti
c

R
e
si

s-
ta

n
c
e

W
h
a
t

a
n
ti

b
io

ti
c

re
si

st
a
n
c
e

g
e
n
e
s

a
re

p
re

se
n
t

O
n
to

lo
g
y

T
e
rm

S
D

C
S

a
n
ti

b
io

ti
c
R

e
is

ta
n
c
e

A
d
d
g
e
n
e
:

B
a
c
te

ri
a
l

R
e
si

st
a
n
c
e

T
a
rg

e
t

O
rg

a
n
is

m
T

h
e

o
rg

a
n
is

m
fo

r
w

h
ic

h
th

e
c
o
n
st

ru
c
t

w
a
s

d
e
si

g
n
e
d

O
n
to

lo
g
y

T
e
rm

S
D

C
S

ta
rg

e
tO

rg
a
n
is

m
A

d
d
g
e
n
e
:V

e
c
to

r
T

y
p

e

S
o
u
rc

e
O

rg
a
n
is

m
T

h
e

o
rg

a
n
is

m
fr

o
m

w
h
ic

h
a

g
e
n
e

w
a
s

ta
k
e
n

O
n
to

lo
g
y

T
e
rm

S
D

C
S

so
u
rc

e
O

rg
a
n
is

m
A

d
d
g
e
n
e
:S

p
e
c
ie

s,
U

n
iP

ro
t:

O
rg

a
n
is

m
,

G
e
n
-

B
a
n
k
:

S
o
u
rc

e
O

rg
a
n
is

m
,

E
n
tr

e
z
:O

rg
a
n
is

m
C

lo
n
in

g
M

e
th

o
d

W
h
a
t

k
in

d
o
f

c
lo

n
in

g
p
ro

c
e
d
u
re

th
is

c
o
m

p
o
n
e
n
t

is
d
e
si

g
n
e
d

fo
r

F
re

e
te

x
t

S
D

C
S

c
lo

n
in

g
M

e
th

o
d

A
d
d
g
e
n
e
:

C
lo

n
in

g
M

e
th

o
d

C
o
d
e
s

fo
r

L
in

k
to

p
ro

te
in

o
b

je
c
ts

U
R

I
S
D

C
S

c
o
d
e
sF

o
r

U
n
iP

ro
t:

P
ro

te
in

R
e
fe

re
n
c
e
s

U
R

L
o
f

so
u
rc

e
s

(e
.g

.
p
u
b
li
c
a
ti

o
n
s)

U
R

L
P

ro
v

w
a
sD

e
ri

v
e
d
F
ro

m
A

d
d
g
e
n
e
:P

u
b
li
c
a
ti

o
n
,

E
n
tr

e
z
:P

ri
m

a
ry

so
u
rc

e
,

G
e
n
b
a
n
k
:(

R
e
fe

re
n
c
e
,

a
u
-

th
o
rs

,
ti

tl
e
,

jo
u
rn

a
l)

,
U

n
i-

P
o
rt

:P
u
b
li
c
a
ti

o
n

D
e
si

g
n

N
o
te

s
A

n
y

n
o
te

s
a
b

o
u
t

h
o
w

th
e

d
e
si

g
n

w
a
s

c
o
n
st

ru
c
te

d
:

e
.g

.
H

ig
h
e
r

G
C

c
o
n
te

n
t,

re
d
u
c
e
d

m
u
ta

g
e
n
ic

it
y
,

e
tc

F
re

e
te

x
t

S
D

C
S

d
e
si

g
n
N

o
te

s

M
u
ta

g
e
n
ic

it
y

T
h
e

p
o
te

n
ti

a
l

fo
r

g
e
n
e
ti

c
c
o
n
st

ru
c
ts

to
u
n
d
e
rg

o
m

u
ta

ti
o
n

F
re

e
te

x
t

S
D

C
S

m
u
ta

g
e
n
ic

it
y

N
o
te

s
A

n
y

fu
rt

h
e
r

c
o
m

m
e
n
ts

F
re

e
te

x
t

S
D

C
S

n
o
te

s
P

a
p

e
r

T
o
p
ic

T
h
e

to
p
ic

o
f

a
jo

u
rn

a
l

a
rt

ic
le

F
re

e
te

x
t

d
c
te

rm
s

su
b

je
c
t

C
e
ll

L
in

e
C

e
ll

li
n
e
s

u
se

d
in

a
jo

u
rn

a
l

a
rt

ic
le

U
R

I
d
c
te

rm
s

su
b

je
c
t

G
e
n
e

G
e
n
e
s

m
e
n
ti

o
n
e
d

in
a

jo
u
rn

a
l

a
rt

ic
le

U
R

I
d
c
te

rm
s

su
b

je
c
t

C
h
e
m

ic
a
l

C
h
e
m

ic
a
ls

m
e
n
ti

o
n
e
d

in
a

jo
u
rn

a
l

a
rt

ic
le

U
R

I
d
c
te

rm
s

su
b

je
c
t

S
p

e
c
ie

s
S
p

e
c
ie

s
m

e
n
ti

o
n
e
d

in
a

jo
u
rn

a
l

a
rt

ic
le

o
r

sp
e
c
ie

s
a
n
n
o
ta

ti
o
n

o
n

a
c
o
m

p
o
n
e
n
t

d
e
f-

in
it

io
n

w
h
e
re

it
is

n
o
t

c
le

a
r

if
it

is
a

so
u
rc

e
o
r

ta
rg

e
t

o
rg

a
n
is

m
O

n
to

lo
g
y

T
e
rm

d
c
te

rm
s

su
b

je
c
t

A
lt

e
re

d
S
e
q
u
e
n
c
e

H
o
w

a
se

q
u
e
n
c
e

h
a
s

b
e
e
n

a
lt

e
re

d
fr

o
m

th
e

o
ri

g
in

a
l

so
u
rc

e
m

a
te

ri
a
l

F
re

e
te

x
t

S
D

C
S

a
lt

e
re

d
S
e
q
u
e
n
c
e

G
ro

w
th

T
e
m

p
e
ra

-
tu

re
T

h
e

te
m

p
e
ra

tu
re

a
t

w
h
ic

h
th

e
ta

rg
e
t

o
rg

a
n
is

m
sh

o
u
ld

b
e

g
ro

w
n

(i
n

c
e
ls

iu
s)

N
u
m

b
e
r

S
D

C
S

g
ro

w
th

T
e
m

p
e
ra

tu
re

A
d
d
g
e
n
e
:

G
ro

w
th

T
e
m

p
e
ra

-
tu

re
G

ro
w

th
In

st
ru

c
ti

o
n
s

A
n
y

n
o
te

s
o
n

h
o
w

to
g
ro

w
th

e
ta

rg
e
t

o
rg

a
n
is

m
o
n
c
e

m
o
d
ifi

e
d

F
re

e
te

x
t

S
D

C
S

g
ro

w
th

In
st

ru
c
ti

o
n
s

A
d
d
g
e
n
e
:

G
ro

w
th

In
st

ru
c
ti

o
n
s

C
o
p
y

N
u
m

b
e
r

H
ig

h
o
r

L
o
w

?
F
re

e
te

x
t

S
D

C
S

c
o
p
y
N

u
m

b
e
r

A
d
d
g
e
n
e
:

C
o
p
y

N
u
m

b
e
r

C
o
n
tr

ib
u
to

r/
A

u
th

o
r

T
h
e

o
rc

id
id

s
o
f

a
n
y

c
o
n
tr

ib
u
ti

n
g

a
u
th

o
rs

U
R

I
d
c

c
re

a
to

r
A

d
d
g
e
n
e
:

D
e
p

o
si

ti
o
n

L
a
b

G
a
te

T
y
p

e
W

h
a
t

k
in

d
o
f

e
le

c
tr

ic
a
l

g
a
te

it
is

e
.g

.
N

O
R

F
re

e
te

x
t

C
e
ll
o

g
a
te

ty
p

e
F
a
m

il
y

W
h
a
t

re
p
re

ss
ib

le
h
o
m

o
lo

g
is

u
se

d
e
.g

.
H

o
m

o
lo

g
to

T
e
tR

F
re

e
te

x
t

C
e
ll
o

fa
m

il
y

G
ro

u
p

N
a
m

e
T

h
e

o
u
tp

u
t

p
ro

te
in

g
ro

u
p

F
re

e
te

x
t

C
e
ll
o

g
ro

u
p

n
a
m

e
C

e
ll
o

n
T

h
e

H
il
l

c
o
e
ffi

c
ie

n
t

N
u
m

b
e
r

C
e
ll
o

n
o
te

s
C

e
ll
o

re
sp

o
n
se

fu
n
c
-

ti
o
n

A
n

e
q
u
a
ti

o
n

sh
o
w

in
g

th
e

o
n

o
ff

th
re

sh
o
ld

s
o
f

th
e

c
ir

c
u
it

re
sp

o
n
se

to
in

p
u
t,

b
a
se

d
o
n

[1
5
8
]

F
re

e
te

x
t

C
e
ll
o

re
sp

o
n
se

fu
n
c
ti

o
n

C
e
ll
o

x
o
ff

th
re

sh
o
ld

T
h
e

c
o
n
c
e
n
tr

a
ti

o
n

a
t

w
h
ic

h
a

p
ro

m
o
te

r
o
u
tp

u
t

a
b

o
v
e

m
in

im
u
m

st
a
rt

s
to

b
e

se
e
n

N
u
m

b
e
r

C
e
ll
o

x
o
ff

th
re

sh
o
ld

C
e
ll
o

x
o
n

th
re

sh
o
ld

T
h
e

lo
w

e
st

c
o
n
e
n
tr

a
ti

o
n

a
t

w
h
ic

h
th

e
m

a
x
im

u
m

p
ro

m
o
te

r
o
u
tp

u
t

is
se

e
n

N
u
m

b
e
r

C
e
ll
o

x
o
n

th
re

sh
o
ld

C
e
ll
o

y
m

a
x

M
a
x
im

u
m

o
b
se

rv
e
d

p
ro

m
o
te

r
o
u
tp

u
t

v
a
lu

e
N

u
m

b
e
r

C
e
ll
o

y
m

a
x

C
e
ll
o

y
m

in
M

in
im

u
m

o
b
se

rv
e
d

p
ro

m
o
te

r
o
u
tp

u
t

v
a
lu

e
N

u
m

b
e
r

C
e
ll
o

y
m

in
C

e
ll
o

K
T

h
e

re
p
re

ss
io

n
th

re
sh

o
ld

(t
h
e

in
p
u
t

v
a
lu

e
a
t

w
h
ic

h
th

e
o
u
tp

u
t

is
h
a
lf

o
f

m
a
x
im

u
m

)
N

u
m

b
e
r

C
e
ll
o

k
B

u
rd

e
n

Q
u
a
n
ti

fi
e
s

th
e

b
u
rd

e
n

a
c
o
n
st

ru
c
t

im
p

o
se

s
o
n

a
c
e
ll

b
a
se

d
o
n

th
e

m
e
th

o
d

in
[4

1
]

N
u
m

b
e
r

S
D

C
S

b
u
rd

e
n

F
lu

o
re

se
n
c
e

F
lu

o
re

sc
e
n
c
e

m
e
a
su

re
m

e
n
ts

b
a
se

d
o
n

th
e

m
e
th

o
d
s

d
e
sc

ri
b

e
d

in
[1

5
]

N
u
m

b
e
r

S
D

C
S

fl
u
o
re

sc
e
n
c
e

R
B

S
S
tr

e
n
g
th

R
B

S
st

re
n
g
th

,
m

e
a
su

re
d

u
si

n
g

th
e

m
e
th

o
d

in
[2

3
7
]

N
u
m

b
e
r

S
D

C
S

rb
sS

tr
e
n
g
th

P
ro

m
o
te

r
S
tr

e
n
g
th

M
e
a
su

re
d

in
R

P
U

(r
e
la

ti
v
e

p
ro

m
o
te

r
u
n
it

s)
a
c
c
o
rd

in
g

to
[1

0
5
]

N
u
m

b
e
r

S
D

C
S

p
ro

m
o
te

rS
tr

e
n
g
th

109

For the terms that use ontologies, a separate table has been made to show more detail

(Table 6.2). Note the “None Term” and “Other Term” Columns. These columns indicate if

the ontology has terms to indicate the property does not exist, or it does exist but there is no

specific term for it in the ontology. For example, adding the term synthetic to a genetic sequence

indicates that it was not taken from an organism. This is important as, if the sequence has no

label, then a user cannot differentiate between a sequence that comes from an organism but is

lacking the label, or a sequence that is synthetic. Similarly, for antibiotic resistance, there is an

important distinction between the absence of antibiotic resistance and the absence of information

about antibiotic resistance. Unfortunately, the Antibiotic Resistance Ontology (https://

obofoundry.org/ontology/aro.html) has no none term. For “Gene” and “Chemical”, a None

Term is not important as an article mentioning no genes does not require an annotation that

no genes are mentioned. The “Other Term” is similarly important. It indicates that there is

information that lacks detail or cannot be expressed using the ontology. For example, it may be

that a construct is known to have antibiotic resistance but not to what antibiotic. Alternatively,

a construct can have antibiotic resistance but to an antibiotic not currently listed in the ontology.

For properties using the NCBI Taxonomy, the use of “unidentified” can indicate information such

as: works in non-human primates or does not work in prokaryotes. The use of an “other” term

should always be accompanied by further explanation in a notes field.

6.2 Research Workflow with Integrated Curation

Integrating curation into the existing research workflow relies on leveraging automation. A,

somewhat idealized, research workflow is shown in Figure 6.2. It divides roughly into 5 stages:

literature study, experimental planning, sequence planning, experimental work, and paper writing.

Literature study: A researcher starts with a question that they answer by searching over

the different databases and repositories. Example questions include:

• What are some papers about metabolic engineering in E. coli? What are some papers

https://obofoundry.org/ontology/aro.html
https://obofoundry.org/ontology/aro.html

110

Name Description Ontology None Term Other Term

Antibiotic
Resistance

What antibiotic resistance
genes are present

Antibiotic
Resistance
Ontology

N/A N/A

Target
Organism

The organism for which the
construct was designed

NCBI
Taxonomy

NCBI:txid32630
(synthetic)

NCBI:txid32644
(unidentified)

Source
Organism

The organism from which a
gene was taken

NCBI
Taxonomy

NCBI:txid32630
(synthetic)

NCBI:txid32644
(unidentified)

Cell Line Cell lines used in a journal ar-
ticle

NCBI
Taxonomy

NCBI:txid32630
(synthetic)

NCBI:txid32644
(unidentified)

Gene Genes mentioned in a journal
article

Uniprot N/A N/A

Chemical Chemicals mentioned in a
journal article

ChEBI N/A N/A

Species Species mentioned in a jour-
nal article or species annota-
tion on a component defini-
tion where it is not clear if it
is a source or target organism

NCBI
Taxonomy

NCBI:txid32630
(synthetic)

NCBI:txid32644
(unidentified)

Table 6.2: This table looks at the SDCS proposed properties with ontologies. Note the “None
Term” and “Other Term” Columns. These columns indicate if the ontology has terms to indicate
the property does not exist, or it does exist but there is no specific term for it in the ontology.

111

Figure 6.2: Research workflow with integrated automation. The steps in the workflow are shown
over several connected panels. Literature Study: A researcher starts with a question which they
answer by querying the different databases and repositories. The cross-linking of the databases
provides the combination of information required to create an experimental plan. Experimental
planning: This includes models which are stored in modeling databases, the creation of code for
pipetting robots and other automated laboratory equipment, and genetic circuit design. Sequence
Planning: This leads to the creation of genetic parts (which can be used in the experimental
work) as well as information about the part sequences. Information about part sequences can
also be gained from sequencers. This sequence information can then be deposited into a sequence
repository. Information can also be deposited into the repository via manual entry into a GUI or
a spreadsheet, rather than an automated output. Experimental Work: Automated laboratory
equipment includes the pipetting work which can build genetic constructs and add reagents, and
measurement work (including flow cytometry). The results of the automated measurements can
be analysed using code. The code is stored in a code repository like GitHub whilst the results of
analysis, as well as the direct outputs from the measurement work, are stored in an experimental
results repository. The code used for the automated pipetting and measurement steps is stored in
a methods database. Paper Writing: Information from the different repositories can be compiled
together to form a “shell” paper. For example, the code for automated laboratory equipment can
be converted to a rudimentary methods section. The “shell” paper requires further details added
by the author and checking of the automatically provided details. Then the paper can be published
and the process can start again with new questions raised by the publication.

112

about metabolic engineering in Pseudomonas putida?

• What are some promoters that can be used in E.coli? What are some promoters I can use

in S.cerevisiae?

• What parts were used to construct the strains in this paper about a fluoride biosensor?

• Which papers use the pLac promoter sequence?

• What promoter is generally used with this CDS?

• What are some inducible promoters for E. coli? What are some strong constitutive pro-

moters for S. cerevisiae?

These questions are answerable due to the curation of parts which enables efficient searching

over cross-linked databases (Figure 6.3). For example, the question about metabolic engineering in

E. coli might be answered using a natural language search in a journal, after which the search results

can be filtered down using ontological suggestions such as a specific E. coli strain or synonyms of

metabolic engineering. Using the information gained through searching, experimental planning can

begin.

Experimental Planning: Experimental planning includes models which are stored in mod-

eling databases. These models may be created using genetic part parameters extracted in the search

stage of the research pipeline. The in silico experiments then inform the creation of code for auto-

mated laboratory equipment (such as pipetting robots), and genetic circuit designs.

Sequence Planning: The genetic circuit design leads to the creation of genetic parts (which

can be used in the experimental work) as well as information about the part sequences. Information

about preexisting parts can be carried through from the literature search stage. This maintains

the provenance chain. Any new parts can be designed in silico and implemented, or come from

natural sources via automated sequencers. This sequence information can then be deposited into a

sequence repository. Note that, sequence information can also be deposited into the repository via

manual entry (into a GUI or a spreadsheet), rather than an automated output. This is important

113

Figure 6.3: Knowledge enabled search overview. Search input may use structure-based queries
where the types of parts required for a design (e.g. repressible promoter) are outlined, however the
exact parts (i.e. lac promoter) are not defined, or natural language queries. Query refinement
can be carried out via ontology based suggestions for similar, more specific, or broader terms, and
facet filtering where a property can be used to refine the search results. Such a property could
include a confidence metric for each part based on the quantity and quality of data about the part.
Search outputs can be either tabular with sorting enabled per column and the ability to choose
various columns, or relationship based graphs that depict how closely objects are related.

114

as it provides a way for researchers with less lab automation to still deposit sequences into the

sequence repository. This increases the diversity of people who can add to the repository, including

researchers from other areas of biology with less of a focus on automation.

Experimental Work: Automated laboratory equipment includes the pipetting robots (which

can build genetic constructs and add reagents), and measurement robots (including flow cytome-

try). The results of the automated measurements can be analyzed using code. The code is stored

in a code repository like GitHub whilst the results of analysis, as well as the direct outputs from

the measurement work, are stored in an experimental results repository. The code used for the

automated pipetting and measurement steps is stored in a methods database.

Paper Writing: Information from the different repositories can be compiled together to

form a “shell” paper. For example, the code for automated laboratory equipment can be converted

to a rudimentary methods section. The “shell” paper requires further details added by the author,

and checking of the automatically provided details. Then, the paper can be published, and the

process can start again with new questions which were raised during the creation of the publication.

In the presented research workflow, many of the transfers of information are from one machine

readable format to another. Thus, provenance information should be preservable. This reduces the

amount of curation required. When curation is needed, it can be incorporated in the transfer of

information from one format to another. An ideal point is when information is added to repositories.

For code, this can be done in the form of linting via automatic Github actions, whenever new code

is pushed. For methods, experimental results, and sequences this curation can be done in a machine

assisted manner. For example, for sequences, machine annotation can occur, using models trained

on post-hoc curation data sets (Chapter 5). These results can then be returned in an interactive

interface where they can be tweaked by the submission author (Figure 6.4). Similarly, once the

paper “shell” has been filled out it can undergo curation to ensure all the relevant cross-linking

has occurred. This cross-linking is made easier by the integration of database references into the

initial “shell” paper. The combination of the “provenance” annotations, with the machine learning

additions can be returned to the submission authors for approval before the “interactive” paper is

115

submitted to a journal (Figure 6.5).

6.3 Realization of the Integrated Curation Workflow

The research workflow with integrated curation is not yet fully realized. However, the devel-

opment of SynBioHub plugins and the Excel-SBOL Converter have brought the workflow a step

closer to realization.

6.3.1 Plugins

SynBioHub plugins have been designed to help realize the research workflow with integrated

curation (Figure 6.6). They can help convert data between SBOL and other formats to facilitate

data input and retrieval from SynBioHub. Additionally, they can aid in curation for publication

data, and query selection and refinement for the literature search.

Search plugins can help with literature search. They allow common queries like “papers with

organism x” or “protein y in source organism z” to be saved. This means users do not need to

understand or write SPARQL to be able to carry out common complex queries. Additionally, link

plugins allow interactions between different databases making it easier to move from one source

of information to another. Finally, download plugins enable found information to be pulled from

SynBioHub and exported in a format that is compatible with the experimental planning and genetic

design software.

When methods have been developed and results generated and analyzed, submit and cura-

tion plugins can be used. Submit plugins can convert different data formats to SBOL for data

submission. Curation plugins can add additional annotations on the SBOL to make submitted

records more complete. The curation interface depicted in Figure 6.4 could be implemented via cu-

ration plugins. Similarly, SYNBICT, which was used for sequence annotation in post-hoc curation

(Chapter 5), could be incorporated into a curation plugin. An initial draft of this plugin has been

developed (https://github.com/SynBioHub/Plugin-Curation-Synbict).

Finally, in the publication stage, download plugins could be used to export data into a “shell”

https://github.com/SynBioHub/Plugin-Curation-Synbict

116

Figure 6.4: Sequence curation interface mock-up. The sequence and part information on the left
is initially annotated using a data mining pipeline. The pipeline results are shown on the right.
Submission authors can use this interface to correct and approve these annotations. For example,
whilst the term B. subtilis was recognized in the part description, the author has decided the
annotation was incorrect and thus removed it. Similarly, of the suggested keywords only two have
been chosen.

117

Figure 6.5: Publication curation interface mock-up. The text on the left is initially annotated using
“provenance” annotations, supplemented by models trained in the text mining pipeline (Chapter 5).
Submission authors can use this interface to correct and approve these annotations. For example,
the term prokaryote was omitted, and citation 11 was not considered to be worth annotating.

118

Figure 6.6: Plugins in the research workflow with integrated curation. This figure is the same as
Figure 6.2, however, here the blue arrows represent links where plugins might be used. Plugins
can help convert data between SBOL and other formats to facilitate data input and retrieval from
SynBioHub. Additionally, they can aid in curation for publication data, and query selection and
refinement for the literature search.

119

paper, with its associated metadata annotations. Then, curation plugins could be used to add and

modify annotations on the final publication. An example of the proposed interface for publication

curation is shown in Figure 6.5.E

6.3.2 Excel-SBOL Converter

The Excel-SBOL Converter (Chapter 4) was also designed to help realize the research work-

flow (Figure 6.7). In particular, the expansion of the scope of the converter was done to allow

different types of data to be read from spreadsheets. This means that not only can it be used to

upload sequences to SynBioHub, but also to upload experimental, or possibly even method data.

The test case where the Excel-SBOL Converter was used for Flapjack data shows an initial proof

of concept. Additionally, many lab robots already take Excel sheets or CSVs as an input, or re-

turn these formats as output. Thus, it seems like there is a clear path for the expansion of the

Excel-SBOL Converter in other parts of the workflow.

6.4 Challenges for the Integrated Curation Workflow

There are still problems left to overcome before the research workflow with integrated curation

(Figure 6.2) is realized. The problems come in two forms: gaps between stages of the workflow,

and resistance to uptake.

6.4.1 Gaps Between Workflow Stages

The plugins provide the opportunity to connect different data formats to different repositories

(i.e. linked open data). However, though the plugin framework has been created, many of the

actually required plugins are not yet realized. For example, the curation plugins, suggested earlier

in the chapter, do not exist. Though their elements (such as the machine learning models) exist, they

have not been put together and given a front end. Additionally, whilst plugins can be integrated

into SynBioHub, they are not currently integrated into any journal websites or other repositories.

Thus, any improvements made to search or for data exchange may not be carried through to other

120

Figure 6.7: Excel-SBOL Converter in the research workflow with integrated curation. This figure
is the same as Figure 6.2, however, here the green arrows represent links where the Excel-SBOL
Converter might be used. It could be used to upload sequences to SynBioHub, but also to upload
experimental, or possibly even method data. The test case where the Excel-SBOL Converter was
used for Flapjack data shows an initial proof of concept. Additionally, many lab robots already
take Excel sheets or CSVs as an input, or return these formats as output. Thus, it seems like there
is a clear path for the expansion of the Excel-SBOL Converter in other parts of the workflow.

121

data stores.

A second hurdle is methodology storage. Methodology mark-up languages have been pro-

posed [132, 133], however they appear to have gained little traction, possibly due to the papers

being in Spanish. Methods are currently stored in journals specifically for methods, such as

Nature Methods (https://www.nature.com/nmeth/) and Bio-Protocol (https://bio-protocol.

org/Default.aspx). To enable the automation and curation proposed, this is a major concern

that must be addressed.

6.4.2 Resistance to Uptake

Apart from missing elements, this research workflow is also hindered by resistance from the

potential user group. This resistance may be due to retraining being required, the extra work

expected from curation, or a mismatch between the standards used and the laboratory experience.

These problems may be addressed by making the workflow as intuitive as possible, decreasing

the work required in stages other than curation (for example the paper publication), and working

closely with a variety of wet-lab scientists to continue to develop the tools and standards (both

through direct feedback and interaction statistics). This may be insufficient to overcome resistance,

thus we suggest further detailed investigation into barriers preventing uptake of the workflow.

https://www.nature.com/nmeth/
https://bio-protocol.org/Default.aspx
https://bio-protocol.org/Default.aspx

Chapter 7

Conclusions

Synthetic biology aims to implement engineering principles of standardization, abstraction,

and modularity to genetic engineering [147]. These principles are applied in order to make synthetic

biology accessible to a greater number of researchers, as well as to address the reproducibility cri-

sis [97]. To this end, a variety of standards were created across the discipline (including SBOL [180],

SBML [92], SEDML [112]) as well as developing tools to help automate the research workflow

(SBOLCanvas [211], SynBioHub [138], OpenTrons https://opentrons.com/, iBioSim [148], Flap-

jack [241]). However, as these tools and standards increase the rate of research, the amount of

data being produced increases. Thus, synthetic biology must also embrace the principles of library

and information sciences in order to allow efficient finding and use of the data being produced.

This dissertation proposes extensions and methodologies for the creation of data that adheres to

the principles of library sciences. This chapter concludes the dissertation by highlighting the main

contributions of this research, which are summarized in Section 7.1, and future directions of this

research, which are discussed in Section 7.2.

7.1 Summary

This dissertation presents methods and tools for the creation of a synthetic biology research

workflow promoting data reuse via principles of curation and automation. Through its embrace

of engineering principles, synthetic biology already leans into many of the principles required for

curation and further automation. The use of machine readable standards (and their verification) is

https://opentrons.com/

123

already wide spread. The tools and methods proposed build on work done by the synthetic biology

community and the library and data science communities. Specifically, this dissertation describes

a SynBioHub plugin framework, the Excel-SBOL Converter, post-hoc curation methodologies, and

an integrated curation workflow.

The SynBioHub plugin framework de-centralizes SynBioHub development. It allows users to

create plugins to adapt SynBioHub to better fit into their existing workflows. Submit and download

plugins enable the exchange of new file formats with SynBioHub. An example is a researcher from

Newcastle University creating a plugin for the upload of ShortBOL to SynBioHub. Visualization

plugins provide users with customization options for the viewing of the data. Several examples have

been developed including for molecule 3D structure visualization and more traditional sequence

visualization. Search and index plugins provide more ways to query the data. They may be

simple implementations of SPARQL queries or include more complex cases such as implementing

ElasticSearch or GraphQL. Curation plugins incorporate automated suggestions with user feedback

to improve sequence annotations and metadata. Finally, link plugins were conceived to provide

seemingly in-place editing of data and models. These six kinds of plugins, together with the

examples and documentation enable workflows based on the finding and exchange of data between

different standards.

The Excel-SBOL Converter was designed to make it possible to benefit from the SBOL

standard without understanding it or being able to write code. Excel was chosen as a specific data

format to concentrate on as CSVs and Excel spreadsheets are already widely used in biological

research. The flexibility and generalization of the Excel-SBOL Converter was a priority to enable

many different kinds of data (experimental, sequences, models, interactions) to be converted to the

SBOL standard. Additionally, the flexible column naming and sheet layout allow users to create

templates that are very similar to ones they currently use. The idea is to make the change for users

as minimal as possible whilst leading to more data collection and introducing more users to SBOL.

Similarly, the SBOL-to-Excel Converter is designed to hide the complexities of SBOL and provide

an output similar to the input. Thus, users should be able to download data that others created in

124

a spreadsheet format that is familiar to them. The overarching goal of the converter is to increase

the compatibility of SBOL and related tools with existing workflows.

To demonstrate the benefits of curation, the post-hoc curation workflow was developed.

This workflow aimed to curate several existing data sets and show that they were more useful

and searchable once they had been curated. Additionally, the aim was to develop a reusable

methodology so others could use post-hoc curation on their previously produced data sets. This

goal is not fully realized as the three case studies (iGEM, ACS, and Addgene) showed great variety

in the underlying data they contained. The variation was both in terms of how the data was

stored in the individual databases and the kinds of labeling used in free text fields. This work did

produce three partially curated data sets, and a set of principles to produce data more conducive to

post-hoc curation. Additionally, it supported the idea that the integration of curation into existing

workflows is more useful than the creation of new, and separate, curation workflows.

Finally, a synthetic biology research workflow promoting data reuse via principles of curation

and automation is proposed. The methodology of this workflow relies on lessons learned from post-

hoc curation of data sets. This includes the proposal of a SBOL Data Content Standard (SDCS),

as well as suggestions about the implementation of the workflow via: leveraging of the machine

learning models generated in the post-hoc curation, the Excel-SBOL Converter, and SynBioHub

plugins. This workflow is designed to be accessible to users who do not commit to the full workflow,

but only use parts of it (including users outside of synthetic biology). Additionally, it is intended

to integrate with existing practices in biological research. The realization of this workflow should

increase the ease of biological research and promote the reuse of previously generated data.

7.2 Future Work

While the research presented is promising, there is room for improvements. Future work

sections were included in each of the chapters, however this section goes over longer term or bigger

picture future work.

125

7.2.1 Plugins

Several kinds of plugins were proposed: submit, visualization, download, search, curation,

index, and link. Whilst the majority of these are fully developed, some require further thought.

Additionally, not all have been incorporated into SynBioHub. As SynBioHub3 is being developed,

further work should be done to consider how plugins are integrated with SynBioHub (the front

or back-end) and how the plugins might handle multi-file requests (currently submit does, but

download does not as it was previously called from a single part page).

7.2.2 Search

Currently there is a search plugin framework, but it is not integrated with SynBioHub.

Integration with SynBioHub includes being able to use returned facts to create follow up queries.

Potentially, the type of query run could also be logged. This would provide information as to the

kinds of queries that are most used and thus help shape future search development. Additionally,

there are no functioning example plugins. Example plugins could be created to answer the example

queries given in Chapter 6, and to incorporating GraphQL queries into SynBioHub. Furthermore,

SBOLExplorer could be rebuilt to be less complicated to maintain, and fit better with the proposed

plugin framework.

7.2.3 User Interface Development

A common theme across future work is the requirement of user interfaces. GUI interfaces

are needed for curation plugins, reuse data, and possibly specialist search result interfaces (e.g.

graph data representations). Some work has been done, as part of search and curation plugins, to

develop a framework for easy HTML form generation. However, this work could be expanded to

make generating simple user interfaces easier.

126

7.2.4 Excel Templates

An initial set of templates was created for the Excel-SBOL Converter, however further tem-

plates should be developed to fit more data types and workflows. Additionally, developing templates

together with laboratory researchers will help increase documentation blind spots. Furthermore,

templates should be developed to help enforce the SDCS.

7.2.5 Further Curation Libraries

Curation libraries were used for SYNBICT annotation in the post-hoc curation pipeline.

These same libraries could be reused for SYNBICT curation plugins. However, expanding the

range and number of these libraries would make curation more effective. New libraries could

include further model organisms, and the most common parts observed in the post-hoc curation

case studies.

7.2.6 Further Curation of iGEM, ACS, and Addgene Libraries

For the post-hoc curation, the initial aim was to generate well annotated libraries. Due to

the difficulty of this task, the libraries generated were not as well-annotated as hoped for. It would

be good to go back and annotate the libraries based on the SDCS proposed. These collections with

more detailed annotations could then also feed back into the curation of sub-component annotations

in the integrated curation workflow.

7.2.7 SBOL Data Content Standard Extension

The SDCS is proposed. However, it is a first draft that still has clear gaps. These gaps include

experimental conditions (e.g. medium and machine used) and modeling parameters. The latter is

particularly important as to close the design, build, test, learn cycle, the part information submitted

must be sufficient to produce models for in silico modeling before in vivo experimentation. Adding

modeling parameters to SDCS, highlights the importance of the parameters. This may induce

more experimental researchers to capture modeling parameters in their experiments. The ability

127

of SDCS to influence experimental design is increased if SDCS is incorporated into the SBOL

workflows. Additionally, this provides testing of the standard which will naturally highlight areas

for expansion (i.e. further properties to add). Additionally, preforming a post-hoc curation exercise

on data submitted with SDCS compliance will indicate which fields might require restricted entry

or clearer None and Other terms.

7.2.8 Framework to Assess Data Reuse

Each of the measures proposed so far hopes to promote data reuse. However, the methods

to assess reuse over time are not currently available. Thus, a workflow could be developed to as-

sess data reuse. This could be a simple set of SPARQL queries looking at the number of times

components are used that are run at regular time intervals. More complex queries could be devel-

oped looking for improvements in sub-component annotations and the effect this has on component

reuse statistics. Finally, a GUI interface could be developed to return visualizations of the reuse

measurements.

7.2.9 Community Uptake

A standard relies on enforcement. This can be de facto enforcement via community nor-

mailization or de jure enforcement via institutions like ACS or NSF. To benefit from the proposed

integrated curation workflow the underlying standards must be enforced. This requires reducing

the barriers to using the standards, increasing the benefits to using them, and obtaining de jure

enforcement. To achieve the radical shift in publishing workflow proposed in Chapter 6, the com-

munity has to be convinced of the benefits of the workflow and early adopters must be curated.

This requires a lot of community outreach and involvement.

Bibliography

[1] IJsbrand Jan Aalbersberg, Sophia Atzeni, Hylke Koers, Beate Specker, and Elena Zudilova-
Seinstra. Bringing digital science deep inside the scientific article: the elsevier article of the
future project. LIBER Quarterly: The Journal of the Association of European Research
Libraries, 23(44):274–299, Apr 2014.

[2] Arda Akdemir and Tetsuo Shibuya. Analyzing the Effect of Multi-task Learning for Biomed-
ical Named Entity Recognition. arXiv:2011.00425 [cs], November 2020. arXiv: 2011.00425.

[3] G. Akrivas, M. Wallace, G. Andreou, G. Stamou, and S. Kollias. Context-sensitive semantic
query expansion. In Proceedings 2002 IEEE International Conference on Artificial Intelligence
Systems (ICAIS 2002), page 109–114, Sep 2002.

[4] allenai. Spacy models for biomedical text processing. https://allenai.github.io/

scispacy/.

[5] G. Alterovitz, T. Muso, and M. F. Ramoni. The challenges of informatics in synthetic biology:
from biomolecular networks to artificial organisms. Briefings in Bioinformatics, 11(1):80–95,
Jan 2010.

[6] Andrawaag. Sulab/genewiki-shex.

[7] Marcelo Arenas, Bernardo Cuenca Grau, Evgeny Kharlamov, Sarunas Marciuska, and
Dmitriy Zheleznyakov. Faceted search over ontology-enhanced rdf data. In Proceedings
of the 23rd ACM International Conference on Conference on Information and Knowledge
Management, CIKM ’14, page 939–948. Association for Computing Machinery, Nov 2014.

[8] Rudeina A. Baasiri, Stanley R. Glasser, David L. Steffen, and David A. Wheeler. The breast
cancer gene database: a collaborative information resource. Oncogene, 18(56):7958–7965,
Dec 1999.

[9] Hasan Baig, Pedro Fontanarrosa, Vishwesh Kulkarni, James Alastair McLaughlin, Prashant
Vaidyanathan, Bryan Bartley, Jacob Beal, Matthew Crowther, Thomas E. Gorochowski,
Raik Grünberg, Goksel Misirli, James Scott-Brown, Ernst Oberortner, Anil Wipat, and
Chris J. Myers. Synthetic biology open language (sbol) version 3.0.0. Journal of Integrative
Bioinformatics, 17(2–3), Jun 2020.

[10] Wendy Baker, Alexandra van den Broek, Evelyn Camon, Pascal Hingamp, Peter Sterk,
Guenter Stoesser, and Mary Ann Tuli. The embl nucleotide sequence database. Nucleic
Acids Research, 28(1):19–23, Jan 2000.

https://allenai.github.io/scispacy/
https://allenai.github.io/scispacy/

129

[11] Ziv Bar-Yossef and Naama Kraus. Context-sensitive query auto-completion. In Proceedings of
the 20th international conference on World wide web, WWW ’11, page 107–116. Association
for Computing Machinery, Mar 2011.

[12] Federico Barone, Francisco Dorr, Luciano E Marasco, Sebastián Mildiner, Inés L Patop,
Santiago Sosa, Lucas G Vattino, Federico A Vignale, Edgar Altszyler, Benjamin Basanta,
and et al. Design and evaluation of an incoherent feed-forward loop for an arsenic biosensor
based on standard igem parts. Synthetic Biology, 2(ysx006), Jan 2017.

[13] Bryan A. Bartley, Kiri Choi, Meher Samineni, Zach Zundel, Tramy Nguyen, Chris J. My-
ers, and Herbert M. Sauro. pysbol: A python package for genetic design automation and
standardization. ACS Synthetic Biology, 8(7):1515–1518, Jul 2019.

[14] G. I. Baylor. Up, up and away. Proc. Roy. Soc., London A, 294:456–475, 1959.

[15] Jacob Beal, Traci Haddock-Angelli, Markus Gershater, Kim de Mora, Meagan Lizarazo, Jim
Hollenhorst, and Randy Rettberg. Reproducibility of fluorescent expression from engineered
biological constructs in e. coli. PLoS ONE, 11(3):e0150182, Mar 2016.

[16] Jacob Beal, Tramy Nguyen, Thomas E. Gorochowski, Angel Goñi-Moreno, James Scott-
Brown, James Alastair McLaughlin, Curtis Madsen, Benjamin Aleritsch, Bryan Bartley,
Shyam Bhakta, Mike Bissell, Sebastian Castillo Hair, Kevin Clancy, Augustin Luna, Nicolas
Le Novère, Zach Palchick, Matthew Pocock, Herbert Sauro, John T. Sexton, Jeffrey J. Tabor,
Christopher A. Voigt, Zach Zundel, Chris Myers, and Anil Wipat. Communicating structure
and function in synthetic biology diagrams. ACS Synthetic Biology, 8(8):1818–1825, 2019.
PMID: 31348656.

[17] Andre Bechara, Maria Luiza Machado, and Vanessa Braganholo. Applying biomedical on-
tologies on semantic query expansion. Nature Precedings, page 1–1, Aug 2009.

[18] Carolin Becker-Leifhold and Samira Iran. Collaborative fashion consumption – drivers, bar-
riers and future pathways. Journal of Fashion Marketing and Management: An International
Journal, 22(2):189–208, Jan 2018.

[19] Ori Ben-Yitzhak, Nadav Golbandi, Nadav Har’El, Ronny Lempel, Andreas Neumann, Shila
Ofek-Koifman, Dafna Sheinwald, Eugene Shekita, Benjamin Sznajder, and Sivan Yogev. Be-
yond basic faceted search. In Proceedings of the 2008 International Conference on Web Search
and Data Mining, WSDM ’08, page 33–44. Association for Computing Machinery, Feb 2008.

[20] Dennis A. Benson, Mark Cavanaugh, Karen Clark, Ilene Karsch-Mizrachi, David J. Lipman,
James Ostell, and Eric W. Sayers. Genbank. Nucleic Acids Research, 41(Database issue):D36–
42, Jan 2013.

[21] Dennis A. Benson, Ilene Karsch-Mizrachi, David J. Lipman, James Ostell, and Eric W. Sayers.
Genbank. Nucleic Acids Research, 39(suppl 1):D32–D37, Jan 2011.

[22] Frank T. Bergmann, Richard Adams, Stuart Moodie, Jonathan Cooper, Mihai Glont, Martin
Golebiewski, Michael Hucka, Camille Laibe, Andrew K. Miller, David P. Nickerson, and et al.
Combine archive and omex format: one file to share all information to reproduce a modeling
project. BMC bioinformatics, 15:369, Dec 2014.

130

[23] Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat, Helge Weissig,
Ilya N. Shindyalov, and Philip E. Bourne. The protein data bank. Nucleic Acids Research,
28(1):235–242, Jan 2000.

[24] Ivelize R Bernardo, Matheus S Mota, and André Santanchè. Extracting and semantically
integrating implicit schemas from multiple spreadsheets of biology based on the recognition
of their nature. Journal of Information and Data Management, 4(2):104–104, 2013.

[25] David M. Blei and John D. Lafferty. Correlated topic models. In Proceedings of the 18th
International Conference on Neural Information Processing Systems, NIPS’05, page 147–154,
Cambridge, MA, USA, 2005. MIT Press.

[26] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. the Journal
of machine Learning research, 3:993–1022, 2003.

[27] Guest Blogger. Identifying sequence elements with snapgene’s feature database.

[28] Jerven Bolleman, Alain Gateau, Sebastien Gehant, and Nicole Redaschi. Provenance and
evidence in uniprotkb. arXiv:1012.1660 [cs], Dec 2010. arXiv: 1012.1660.

[29] Ian R. Booth. Sysmo: back to the future. Nature Reviews Microbiology, 5(8):566–566, Aug
2007.

[30] Christine L. Borgman. The conundrum of sharing research data. Journal of the American
Society for Information Science and Technology, 63(6):1059–1078, 2012.

[31] Philip E. Bourne, Jon R. Lorsch, and Eric D. Green. Perspective: Sustaining the big-data
ecosystem. Nature, 527(7576):S16–S17, Nov 2015.

[32] Tim Bray, Charles Frankston, and Ashok Malhotra. Document content description for xml,
Jul 1998.

[33] Alvis Brazma, Maria Krestyaninova, and Ugis Sarkans. Standards for systems biology. Nature
Reviews Genetics, 7(88):593–605, Aug 2006.

[34] Lukas Buecherl, Riley Roberts, Pedro Fontanarrosa, Payton J. Thomas, Jeanet Mante, Zhen
Zhang, and Chris J. Myers. Stochastic hazard analysis of genetic circuits in ibiosim and
stamina. ACS Synthetic Biology, 10(10):2532–2540, Oct 2021.

[35] Robert C. Cannon, Padraig Gleeson, Sharon Crook, Gautham Ganapathy, Boris Marin, Eu-
genio Piasini, and R. Angus Silver. Lems: a language for expressing complex biological
models in concise and hierarchical form and its use in underpinning neuroml 2. Frontiers in
Neuroinformatics, 8:79, 2014.

[36] Barry Canton, Anna Labno, and Drew Endy. Refinement and standardization of synthetic
biological parts and devices. Nature Biotechnology, 26(7):787–793, Jul 2008.

[37] Huanhuan Cao, Derek Hao Hu, Dou Shen, Daxin Jiang, Jian-Tao Sun, Enhong Chen, and
Qiang Yang. Context-aware query classification. In Proceedings of the 32nd international
ACM SIGIR conference on Research and development in information retrieval, SIGIR ’09,
page 3–10. Association for Computing Machinery, Jul 2009.

131

[38] Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong Chen, and Hang Li.
Context-aware query suggestion by mining click-through and session data. In Proceedings of
the 14th ACM SIGKDD international conference on Knowledge discovery and data mining,
KDD ’08, page 875–883. Association for Computing Machinery, Aug 2008.

[39] José Maŕıa Cavanillas, Edward Curry, and Wolfgang Wahlster. New Horizons for a
Data-Driven Economy. Springer International Publishing, 2016.

[40] Arnaud Ceol, Andrew Chatr-Aryamontri, Luana Licata, and Gianni Cesareni. Linking entries
in protein interaction database to structured text: The febs letters experiment. FEBS Letters,
582(8):1171–1177, Apr 2008.

[41] Francesca Ceroni, Rhys Algar, Guy-Bart Stan, and Tom Ellis. Quantifying cellular capacity
identifies gene expression designs with reduced burden. Nature Methods, 12(5):415–418, May
2015.

[42] Ye Chen, Shuyi Zhang, Eric M. Young, Timothy S. Jones, Douglas Densmore, and
Christopher A. Voigt. Genetic circuit design automation for yeast. Nature Microbiology,
5(11):1349–1360, Nov 2020.

[43] Ying-Ja Chen, Peng Liu, Alec A. K. Nielsen, Jennifer A. N. Brophy, Kevin Clancy, Todd Pe-
terson, and Christopher A. Voigt. Characterization of 582 natural and synthetic terminators
and quantification of their design constraints. Nature Methods, 10(7):659–664, July 2013.
Number: 7 Publisher: Nature Publishing Group.

[44] Peter J. A. Cock, Christopher J. Fields, Naohisa Goto, Michael L. Heuer, and Peter M. Rice.
The sanger fastq file format for sequences with quality scores, and the solexa/illumina fastq
variants. Nucleic Acids Research, 38(6):1767–1771, Apr 2010.

[45] Samuel Colvin. pydantic, May 2017.

[46] Kim Y Hiller Connell. Exploration of second-hand apparel acquisition behaviors and barriers.
In itaa 2009 Proceedings, page 3, 2009.

[47] The UniProt Consortium. Uniprot: a hub for protein information. Nucleic Acids Research,
43(D1):D204–D212, Jan 2015.

[48] The UniProt Consortium. Uniprot: a worldwide hub of protein knowledge. Nucleic Acids
Research, 47(D1):D506 – D515, Jan 2019.

[49] Mark J. Costello, William K. Michener, Mark Gahegan, Zhi-Qiang Zhang, and Philip E.
Bourne. Biodiversity data should be published, cited, and peer reviewed. Trends in Ecology
& Evolution, 28(8):454–461, Aug 2013.

[50] Mélanie Courtot, Nick Juty, Christian Knüpfer, Dagmar Waltemath, Anna Zhukova, An-
dreas Dräger, Michel Dumontier, Andrew Finney, Martin Golebiewski, Janna Hastings, Ste-
fan Hoops, Sarah Keating, Douglas B Kell, Samuel Kerrien, James Lawson, Allyson Lister,
James Lu, Rainer Machne, Pedro Mendes, Matthew Pocock, Nicolas Rodriguez, Alice Vil-
leger, Darren J Wilkinson, Sarala Wimalaratne, Camille Laibe, Michael Hucka, and Nicolas
Le Novère. Controlled vocabularies and semantics in systems biology. Molecular Systems
Biology, 7(1):543, Jan 2011.

132

[51] Gamal Crichton, Sampo Pyysalo, Billy Chiu, and Anna Korhonen. A neural network multi-
task learning approach to biomedical named entity recognition. BMC Bioinformatics, 18:368,
August 2017.

[52] M. E. Crow. Aerodynamic sound emission as a singular perturbation problem. Stud. Appl.
Math., 29:21–44, 1968.

[53] Fiona Cunningham, Barry Moore, Nicole Ruiz-Schultz, Graham RS Ritchie, and Karen Eil-
beck. Improving the sequence ontology terminology for genomic variant annotation. Journal
of Biomedical Semantics, 6(1):32, Jul 2015.

[54] Renata Gonçalves Curty, Kevin Crowston, Alison Specht, Bruce W. Grant, and Elizabeth D.
Dalton. Attitudes and norms affecting scientists’ data reuse. PLOS ONE, 12(12):e0189288,
Dec 2017.

[55] Davis Daniel, Jane Burry, and Mark Burry. Untangling parametric schemata: Enhancing
collaboration through modular programming. CAAD Futures, Jan 2011.

[56] Kirill Degtyarenko, Paula de Matos, Marcus Ennis, Janna Hastings, Martin Zbinden, Alan
McNaught, Rafael Alcántara, Michael Darsow, Mickaël Guedj, and Michael Ashburner.
Chebi: a database and ontology for chemical entities of biological interest. Nucleic Acids
Research, 36(suppl 1):D344–D350, Jan 2008.

[57] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[58] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

[59] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv:1810.04805 [cs], May 2019.
arXiv: 1810.04805.

[60] Julian D. Dole. Perturbation Methods in Applied Mathematics. Winsdell Publishing Com-
pany, 1967.

[61] Michael Droettbooom. Understanding json schema, Dec 2020.

[62] Karen Eilbeck, Suzanna E. Lewis, Christopher J. Mungall, Mark Yandell, Lincoln Stein,
Richard Durbin, and Michael Ashburner. The sequence ontology: a tool for the unification
of genome annotations. Genome Biology, 6(5):R44, Apr 2005.

[63] Karen Eilbeck, Suzanna E Lewis, Christopher J Mungall, Mark Yandell, Lincoln Stein,
Richard Durbin, and Michael Ashburner. The sequence ontology: a tool for the unification
of genome annotations. Genome biology, 6(5):R44, 2005.

[64] Joshua D. Eisenberg, Deya Banisakher, Maria Presa, Kalli Unthank, Mark A. Finlayson,
Rene Price, and Shu-Ching Chen. Toward semantic search for the biogeochemical literature.
In 2017 IEEE International Conference on Information Reuse and Integration (IRI), page
517–525, Aug 2017.

133

[65] J. S. Fabnis, H. J. Giblet, and H. McDormand. Navier-stokes analysis of solid rocket motor
internal flow. J. Prop. and Power, 2:157–164, 1980.

[66] James R. Faeder, Michael L. Blinov, and William S. Hlavacek. Rule-Based Modeling of
Biochemical Systems with BioNetGen, page 113–167. Methods in Molecular Biology. Humana
Press, 2009.

[67] Dawn Field, George Garrity, Tanya Gray, Norman Morrison, Jeremy Selengut, Peter Sterk,
Tatiana Tatusova, Nicholas Thomson, Michael J Allen, Samuel V Angiuoli, Michael Ash-
burner, Nelson Axelrod, Sandra Baldauf, Stuart Ballard, Jeffrey Boore, Guy Cochrane,
James Cole, Peter Dawyndt, Paul De Vos, Claude dePamphilis, Robert Edwards, Nadeem
Faruque, Robert Feldman, Jack Gilbert, Paul Gilna, Frank Oliver Glöckner, Philip Gold-
stein, Robert Guralnick, Dan Haft, David Hancock, Henning Hermjakob, Christiane Hertz-
Fowler, Phil Hugenholtz, Ian Joint, Leonid Kagan, Matthew Kane, Jessie Kennedy, George
Kowalchuk, Renzo Kottmann, Eugene Kolker, Saul Kravitz, Nikos Kyrpides, Jim Leebens-
Mack, Suzanna E Lewis, Kelvin Li, Allyson L Lister, Phillip Lord, Natalia Maltsev, Victor
Markowitz, Jennifer Martiny, Barbara Methe, Ilene Mizrachi, Richard Moxon, Karen Nel-
son, Julian Parkhill, Lita Proctor, Owen White, Susanna-Assunta Sansone, Andrew Spiers,
Robert Stevens, Paul Swift, Chris Taylor, Yoshio Tateno, Adrian Tett, Sarah Turner, David
Ussery, Bob Vaughan, Naomi Ward, Trish Whetzel, Ingio San Gil, Gareth Wilson, and Anil
Wipat. The minimum information about a genome sequence (migs) specification. Nature
biotechnology, 26(5):541–547, May 2008.

[68] Pedro Fontanarrosa. AUTOMATED GENERATION OF DYNAMIC MODELS FOR
GENETIC REGULATORY NETWORKS. PhD thesis, University of Utah, Dec 2019.

[69] International Society for Biocuration. Biocuration: Distilling data into knowledge. PLoS
Biology, 16(4), Apr 2018.

[70] Ad Hoc Working Group for Critical Appraisal of the Medical Literature. A proposal for more
informative abstracts of clinical articles. Annals of Internal Medicine, 106(4):598–604, Apr
1987.

[71] Katharina Frey, Alenka Hafner, and Boas Pucker. The reuse of public datasets in the life
sciences: Potential risks and rewards. Preprints, Feb 2020.

[72] Brett M. Frischmann, Michael J. Madison, and Katherine J. Strandburg. Governing
Medical Knowledge Commons. Cambridge University Press, Oct 2017. Google-Books-ID:
Ai02DwAAQBAJ.

[73] Michal Galdzicki, Deepak Chandran, Alec Nielsen, Jason Morrison, Mackenzie Cowell, Raik
Grünberg, Sean Sleight, and Herbert Sauro. Provisional biobrick language (pobol), May 2009.
Accepted: 2009-05-15T18:05:32Z.

[74] Michal Galdzicki, Kevin P. Clancy, Ernst Oberortner, Matthew Pocock, Jacqueline Y. Quinn,
Cesar A. Rodriguez, Nicholas Roehner, Mandy L. Wilson, Laura Adam, J. Christopher An-
derson, and et al. The synthetic biology open language (sbol) provides a community standard
for communicating designs in synthetic biology. Nature Biotechnology, 32(6):545–550, Jun
2014.

134

[75] Michal Galdzicki, Kevin P Clancy, Ernst Oberortner, Matthew Pocock, Jacqueline Y Quinn,
Cesar A Rodriguez, Nicholas Roehner, Mandy L Wilson, Laura Adam, J Christopher Ander-
son, et al. The synthetic biology open language (sbol) provides a community standard for
communicating designs in synthetic biology. Nature biotechnology, 32(6):545–550, 2014.

[76] John H. Gennari, Maxwell L. Neal, Michal Galdzicki, and Daniel L. Cook. Multiple ontologies
in action: composite annotations for biosimulation models. Journal of Biomedical Informatics,
44(1):146–154, Feb 2011.

[77] Padraig Gleeson, Sharon Crook, Robert C. Cannon, Michael L. Hines, Guy O. Billings,
Matteo Farinella, Thomas M. Morse, Andrew P. Davison, Subhasis Ray, Upinder S. Bhalla,
and et al. Neuroml: A language for describing data driven models of neurons and networks
with a high degree of biological detail. PLOS Computational Biology, 6(6):e1000815, Jun
2010.

[78] Michael Gorman. Five new laws of librarianship. American Libaries, Sep 1995.

[79] NISO Framework Working Group. A framework of guidance for building good digital col-
lections - 3rd edition. National Information Standards Organization (NISO), page 100, Dec
2007.

[80] R. Guha, Rob McCool, and Eric Miller. Semantic search. In Proceedings of the 12th
international conference on World Wide Web, WWW ’03, page 700–709. Association for
Computing Machinery, May 2003.

[81] F. Guillot and Z. Javalon. Acoustic boundary layers in propellant rocket motors. J. Prop.
and Power, 5:331–339, 1989.

[82] Timothy S. Ham, Zinovii Dmytriv, Hector Plahar, Joanna Chen, Nathan J. Hillson, and
Jay D. Keasling. Design, implementation and practice of jbei-ice: an open source biological
part registry platform and tools. Nucleic Acids Research, 40(18):e141, Oct 2012.

[83] Aniko Hannak, Piotr Sapiezynski, Arash Molavi Kakhki, Balachander Krishnamurthy, David
Lazer, Alan Mislove, and Christo Wilson. Measuring personalization of web search. In
Proceedings of the 22nd international conference on World Wide Web, WWW ’13, page
527–538. Association for Computing Machinery, May 2013.

[84] Todd W. Harris, Igor Antoshechkin, Tamberlyn Bieri, Darin Blasiar, Juancarlos Chan, Wen J.
Chen, Norie De La Cruz, Paul Davis, Margaret Duesbury, Ruihua Fang, Jolene Fernan-
des, Michael Han, Ranjana Kishore, Raymond Lee, Hans-Michael Müller, Cecilia Nakamura,
Philip Ozersky, Andrei Petcherski, Arun Rangarajan, Anthony Rogers, Gary Schindelman,
Erich M. Schwarz, Mary Ann Tuli, Kimberly Van Auken, Daniel Wang, Xiaodong Wang, Gary
Williams, Karen Yook, Richard Durbin, Lincoln D. Stein, John Spieth, and Paul W. Stern-
berg. Wormbase: a comprehensive resource for nematode research. Nucleic Acids Research,
38(suppl 1):D463–D467, Jan 2010.

[85] Todd W. Harris, Igor Antoshechkin, Tamberlyn Bieri, Darin Blasiar, Juancarlos Chan, Wen J.
Chen, Norie De La Cruz, Paul Davis, Margaret Duesbury, Ruihua Fang, Jolene Fernan-
des, Michael Han, Ranjana Kishore, Raymond Lee, Hans-Michael Müller, Cecilia Nakamura,
Philip Ozersky, Andrei Petcherski, Arun Rangarajan, Anthony Rogers, Gary Schindelman,

135

Erich M. Schwarz, Mary Ann Tuli, Kimberly Van Auken, Daniel Wang, Xiaodong Wang, Gary
Williams, Karen Yook, Richard Durbin, Lincoln D. Stein, John Spieth, and Paul W. Stern-
berg. Wormbase: a comprehensive resource for nematode research. Nucleic Acids Research,
38(suppl 1):D463–D467, Jan 2010.

[86] James Hartley. Current findings from research on structured abstracts: an update. Journal
of the Medical Library Association: JMLA, 102(3):146–148, Jul 2014.

[87] Benjamin Hatch, Linhao Meng, Jeanet Mante, James A. McLaughlin, James Scott-Brown,
and Chris J. Myers. Visbol2—improving web-based visualization for synthetic biology designs.
ACS Synthetic Biology, 10(8):2111–2115, Aug 2021.

[88] John R Hayes. Modular programming in c. Embedded Systems Programming, 14(13):18–24,
2001.

[89] Lynette Hirschman, Karën Fort, Stéphanie Boué, Nikos Kyrpides, Rezarta Islamaj Doğan,
and Kevin Bretonnel Cohen. Crowdsourcing and curation: perspectives from biology and
natural language processing. Database, 2016, Jan 2016.

[90] Michal Horejsek. Fast json schema for python — fastjsonschema documentation, 2016.

[91] Doug Howe, Maria Costanzo, Petra Fey, Takashi Gojobori, Linda Hannick, Winston Hide,
David P. Hill, Renate Kania, Mary Schaeffer, Susan St Pierre, Simon Twigger, Owen White,
and Seung Yon Rhee. The future of biocuration. Nature, 455(7209):47–50, Sep 2008.

[92] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin, B. J. Born-
stein, D. Bray, A. Cornish-Bowden, and et al. The systems biology markup language (sbml):
a medium for representation and exchange of biochemical network models. Bioinformatics
(Oxford, England), 19(4):524–531, Mar 2003.

[93] Michael Hucka, David P. Nickerson, Gary D. Bader, Frank T. Bergmann, Jonathan Cooper,
Emek Demir, Alan Garny, Martin Golebiewski, Chris J. Myers, Falk Schreiber, and et al.
Promoting coordinated development of community-based information standards for modeling
in biology: The combine initiative. Frontiers in Bioengineering and Biotechnology, 3:19, 2015.

[94] IBM. SPSS Statistics. download from vendor site, 2012. version 21.

[95] Jon Ison, Matúš Kalaš, Inge Jonassen, Dan Bolser, Mahmut Uludag, Hamish McWilliam,
James Malone, Rodrigo Lopez, Steve Pettifer, and Peter Rice. Edam: an ontology of
bioinformatics operations, types of data and identifiers, topics and formats. Bioinformatics,
29(10):1325–1332, May 2013.

[96] Sonya V. Iverson, Traci L. Haddock, Jacob Beal, and Douglas M. Densmore. CIDAR MoClo:
Improved MoClo Assembly Standard and New E. coli Part Library Enable Rapid Combi-
natorial Design for Synthetic and Traditional Biology. ACS Synthetic Biology, 5(1):99–103,
January 2016. Publisher: American Chemical Society.

[97] Mathew M Jessop-Fabre and Nikolaus Sonnenschein. Improving reproducibility in synthetic
biology. Frontiers in Bioengineering and Biotechnology, 7, 2019.

136

[98] Abayomi Oluwanbe Johnson, Miriam Gonzalez-Villanueva, Kang Lan Tee, and Tuck Seng
Wong. An Engineered Constitutive Promoter Set with Broad Activity Range for Cupriavidus
necator H16. ACS Synthetic Biology, 7(8):1918–1928, August 2018. Publisher: American
Chemical Society.

[99] Nick Juty. Systems biology ontology: Update. Nature Precedings, page 1–1, Oct 2010.

[100] Linda J. Kahl and Drew Endy. A survey of enabling technologies in synthetic biology. Journal
of Biological Engineering, 7(1):13, May 2013.

[101] Minoru Kanehisa and Susumu Goto. Kegg: Kyoto encyclopedia of genes and genomes. Nucleic
Acids Research, 28(1):27 – 30, Jan 2000.

[102] Jonathan R. Karr, Wolfram Liebermeister, Arthur P. Goldberg, John A. P. Sekar, and Bilal
Shaikh. Objtables: structured spreadsheets that promote data quality, reuse, and integration.
arXiv:2005.05227 [cs, q-bio], Aug 2020. arXiv: 2005.05227.

[103] Abhijith Kashyap, Vagelis Hristidis, and Michalis Petropoulos. Facetor: cost-driven explo-
ration of faceted query results. In Proceedings of the 19th ACM international conference on
Information and knowledge management, CIKM ’10, page 719–728. Association for Comput-
ing Machinery, Oct 2010.

[104] Spyridon Kavvadias, George Drosatos, and Eleni Kaldoudi. Supporting topic modeling and
trends analysis in biomedical literature. Journal of Biomedical Informatics, 110:103574, 2020.

[105] Jason R. Kelly, Adam J. Rubin, Joseph H. Davis, Caroline M. Ajo-Franklin, John Cumbers,
Michael J. Czar, Kim de Mora, Aaron L. Glieberman, Dileep D. Monie, and Drew Endy.
Measuring the activity of biobrick promoters using an in vivo reference standard. Journal of
Biological Engineering, 3:4, Mar 2009.

[106] Jason R. Kelly, Adam J. Rubin, Joseph H. Davis, Caroline M. Ajo-Franklin, John Cumbers,
Michael J. Czar, Kim de Mora, Aaron L. Glieberman, Dileep D. Monie, and Drew Endy.
Measuring the activity of biobrick promoters using an in vivo reference standard. Journal of
Biological Engineering, 3:4, Mar 2009.

[107] Richard JR Kelwick, Alexander J Webb, and Paul S Freemont. Biological materials: the
next frontier for cell-free synthetic biology. Frontiers in Bioengineering and Biotechnology, 8,
2020.

[108] Ahmad S. Khalil and James J. Collins. Synthetic biology: applications come of age. Nature
Reviews. Genetics, 11(5):367–379, May 2010.

[109] Weston Kightlinger, Katherine F Warfel, Matthew P DeLisa, and Michael C Jewett. Synthetic
glycobiology: parts, systems, and applications. ACS synthetic biology, 9(7):1534–1562, 2020.

[110] Halil Kilicoglu, Graciela Rosemblat, Marcelo Fiszman, and Dongwook Shin. Broad-coverage
biomedical relation extraction with semrep. BMC bioinformatics, 21:1–28, 2020.

[111] Holger Knublauch and Dimitris Kontokostas. Shapes constraint language (shacl), Jul 2017.

137

[112] Dagmar Köhn and Nicolas Le Novère. Sed-ml – an xml format for the implementation of
the miase guidelines. In Monika Heiner and Adelinde M. Uhrmacher, editors, Computational
Methods in Systems Biology, Lecture Notes in Computer Science, page 176–190. Springer,
2008.

[113] Eugene Kolker and Elizabeth Stewart. Omics studies: How about metadata checklist and
data publications? Journal of Proteome Research, 13(3):1783–1784, Mar 2014.

[114] Eugene Kolker, Vural Özdemir, Lennart Martens, William Hancock, Gordon Anderson,
Nathaniel Anderson, Sukru Aynacioglu, Ancha Baranova, Shawn R. Campagna, Rui Chen,
John Choiniere, Stephen P. Dearth, Wu-Chun Feng, Lynnette Ferguson, Geoffrey Fox, Dmitrij
Frishman, Robert Grossman, Allison Heath, Roger Higdon, Mara H. Hutz, Imre Janko, Li-
hua Jiang, Sanjay Joshi, Alexander Kel, Joseph W. Kemnitz, Isaac S. Kohane, Natali Kolker,
Doron Lancet, Elaine Lee, Weizhong Li, Andrey Lisitsa, Adrian Llerena, Courtney MacNealy-
Koch, Jean-Claude Marshall, Paola Masuzzo, Amanda May, George Mias, Matthew Monroe,
Elizabeth Montague, Sean Mooney, Alexey Nesvizhskii, Santosh Noronha, Gilbert Omenn,
Harsha Rajasimha, Preveen Ramamoorthy, Jerry Sheehan, Larry Smarr, Charles V. Smith,
Todd Smith, Michael Snyder, Srikanth Rapole, Sanjeeva Srivastava, Larissa Stanberry, Eliza-
beth Stewart, Stefano Toppo, Peter Uetz, Kenneth Verheggen, Brynn H. Voy, Louise Warnich,
Steven W. Wilhelm, and Gregory Yandl. Toward more transparent and reproducible omics
studies through a common metadata checklist and data publications. OMICS: A Journal of
Integrative Biology, 18(1):10–14, Jan 2014.

[115] Roberta Kwok. Five hard truths for synthetic biology. Nature, 463(7279):288–290, Jan 2010.

[116] Leslie Lamport. LATEX: a document preparation system: user’s guide and reference manual.
Addison-wesley, 1994.

[117] Henry Lao. Linear Acoustic Processes in Rocket Engines. PhD thesis, University of Colorado
at Boulder, 1979.

[118] Q. Lao, M. N. Cassoy, and K. Kirkpatrick. Acoustically generated vorticity from internal
flow. J. Fluid Mechanics, 2:122–133, 1996.

[119] Q. Lao, D. R. Kassoy, and K. Kirkkopru. Nonlinear acoustic processes in rocket engines. J.
Fluid Mechanics, 3:245–261, 1997.

[120] Peder Olesen Larsen and Markus von Ins. The rate of growth in scientific publication and the
decline in coverage provided by science citation index. Scientometrics, 84(3):575–603, 2010.

[121] Timothy Lebo, Satya Sahoo, Deborah McGuinness, Khalid Belhajjame, James Cheney, David
Corsar, Daniel Garijo, Stian Soiland-Reyes, Stephan Zednik, and Jun Zhao. Prov-o: The prov
ontology. World Wide Web Consortium, Apr 2013.

[122] Jinhyuk Lee. BioBERT. DMIS Laboratory - Korea University, Feb 2022.

[123] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. Biobert: a pre-trained biomedical language representation model for
biomedical text mining. Bioinformatics, 36(4):1234–1240, 2020.

138

[124] Michael E. Lee, William C. DeLoache, Bernardo Cervantes, and John E. Dueber. A Highly
Characterized Yeast Toolkit for Modular, Multipart Assembly. ACS Synthetic Biology,
4(9):975–986, September 2015. Publisher: American Chemical Society.

[125] Raymond Y. N. Lee and Paul W. Sternberg. Building a cell and anatomy ontology of
caenorhabditis elegans. Comparative and Functional Genomics, 4(1):121–126, 2003.

[126] Florian Leitner, Andrew Chatr-aryamontri, Arnaud Ceol, Martin Krallinger, Luana Licata,
Dr Lynette Hirschman, Gianni Cesareni, and Alfonso Valencia. Enriching publications with
structured digital abstracts: The human-machine experiment. MITRE, Sep 2013.

[127] Alessandro Maccagnan, Mauro Riva, Erika Feltrin, Barbara Simionati, Tullio Vardanega,
Giorgio Valle, and Nicola Cannata. Combining ontologies and workflows to design formal
protocols for biological laboratories. Automated Experimentation, 2(1):3, Apr 2010.

[128] Rahuman S Malik-Sheriff, Mihai Glont, Tung V N Nguyen, Krishna Tiwari, Matthew G
Roberts, Ashley Xavier, Manh T Vu, Jinghao Men, Matthieu Maire, Sarubini Kananathan,
Emma L Fairbanks, Johannes P Meyer, Chinmay Arankalle, Thawfeek M Varusai, Vincent
Knight-Schrijver, Lu Li, Corina Dueñas-Roca, Gaurhari Dass, Sarah M Keating, Young M
Park, Nicola Buso, Nicolas Rodriguez, Michael Hucka, and Henning Hermjakob. Biomod-
els—15 years of sharing computational models in life science. Nucleic Acids Research,
48(D1):D407–D415, Jan 2020.

[129] Jeanet Mante, Yikai Hao, Jacob Jett, Udayan Joshi, Kevin Keating, Xiang Lu, Gaurav
Nakum, Nicholas E. Rodriguez, Jiawei Tang, Logan Terry, Xuanyu Wu, Eric Yu, J. Stephen
Downie, Bridget T. McInnes, Mai H. Nguyen, Brandon Sepulvado, Eric M. Young, and
Chris J. Myers. Synthetic biology knowledge system. ACS Synthetic Biology, Aug 2021.

[130] Jeanet Mante, Nicholas Roehner, Kevin Keating, James Alastair McLaughlin, Eric Young,
Jacob Beal, and Chris J. Myers. Curation principles derived from the analysis of the sbol
igem data set. ACS Synthetic Biology, Sep 2021.

[131] Jeanet Mante, Zach Zundel, and Chris Myers. Extending synbiohub’s functionality with
plugins. ACS Synthetic Biology, 9(5):1216–1220, May 2020.

[132] Carlos Marcondes. From scientific communication to public knowledge: the scientific article
web published as a knowledge base. In Proc. 9th ICCC ElPub, Jan 2005.

[133] Carlos Henrique Marcondes. Scientific methodology elements structure of Health Science
e-journal articles. PhD thesis, Universidade Federal Fluminense - Brasil, Sep 2005.

[134] Jun Mashima, Yuichi Kodama, Takatomo Fujisawa, Toshiaki Katayama, Yoshihiro Okuda,
Eli Kaminuma, Osamu Ogasawara, Kousaku Okubo, Yasukazu Nakamura, and Toshihisa
Takagi. Dna data bank of japan. Nucleic Acids Research, 45(D1):D25–D31, Jan 2017.

[135] Yukiko Matsuoka, Samik Ghosh, and Hiroaki Kitano. Consistent design schematics for bi-
ological systems: standardization of representation in biological engineering. Journal of the
Royal Society Interface, 6(Suppl 4):S393–S404, Aug 2009.

[136] Andrew Kachites McCallum. Mallet: A machine learning for language toolkit. http://

mallet.cs.umass.edu.

http://mallet.cs.umass.edu
http://mallet.cs.umass.edu

139

[137] James Alastair McLaughlin, Jacob Beal, Göksel Mısırlı, Raik Grünberg, Bryan A. Bartley,
James Scott-Brown, Prashant Vaidyanathan, Pedro Fontanarrosa, Ernst Oberortner, Anil
Wipat, Thomas E. Gorochowski, and Chris J. Myers. The synthetic biology open language
(sbol) version 3: Simplified data exchange for bioengineering. Frontiers in Bioengineering
and Biotechnology, 8:1009, 2020.

[138] James Alastair McLaughlin, Chris J. Myers, Zach Zundel, Göksel Mısırlı, Michael Zhang,
Irina Dana Ofiteru, Angel Goñi-Moreno, and Anil Wipat. Synbiohub: A standards-enabled
design repository for synthetic biology. ACS Synthetic Biology, 7(2):682–688, Feb 2018.

[139] James Alastair McLaughlin, Chris J. Myers, Zach Zundel, Göksel Mısırlı, Michael Zhang,
Irina Dana Ofiteru, Angel Goñi-Moreno, and Anil Wipat. SynBioHub: A standards-enabled
design repository for synthetic biology. ACS Synthetic Biology, 7(2):682–688, 2018. PMID:
29316788.

[140] Peter McQuilton, Alejandra Gonzalez-Beltran, Philippe Rocca-Serra, Milo Thurston, Allyson
Lister, Eamonn Maguire, and Susanna-Assunta Sansone. Biosharing: curated and crowd-
sourced metadata standards, databases and data policies in the life sciences. Database: The
Journal of Biological Databases and Curation, 2016, May 2016.

[141] Goksel Misirli, Anil Wipat, Joseph Mullen, Katherine James, Matthew Pocock, Wendy Smith,
Nick Allenby, and Jennifer S. Hallinan. Bacillondex: An integrated data resource for systems
and synthetic biology. Journal of Integrative Bioinformatics, 10(2):103 – 116, Jun 2013.

[142] F. C. Mulick. Rotational axisymmetric mean flow and damping of acoustic waves in a solid
propellant. AIAA J., 3:1062–1063, 1964.

[143] F. C. Mulick. Stability of four-dimensional motions in a combustion chamber. Comb. Sci.
Tech., 19:99–124, 1981.

[144] Kristian Müller and Katja Arndt. Standardization in synthetic biology. Methods in molecular
biology (Clifton, N.J.), 813:23–43, Jan 2012.

[145] Richard Murray. Addgene: Cidar moclo extension, volume i, Oct 2019.

[146] Mark A Musen, Carol A Bean, Kei-Hoi Cheung, Michel Dumontier, Kim A Durante,
Olivier Gevaert, Alejandra Gonzalez-Beltran, Purvesh Khatri, Steven H Kleinstein, Martin J
O’Connor, Yannick Pouliot, Philippe Rocca-Serra, Susanna-Assunta Sansone, and Jeffrey A
Wiser. The center for expanded data annotation and retrieval. Journal of the American
Medical Informatics Association: JAMIA, 22(6):1148–1152, Nov 2015.

[147] Chris J. Myers. Computational synthetic biology: Progress and the road ahead. IEEE
Transactions on Multi-Scale Computing Systems, 1(1):19–32, Jan 2015.

[148] Chris J. Myers, Nathan Barker, Kevin Jones, Hiroyuki Kuwahara, Curtis Madsen, and
Nam-Phuong D. Nguyen. ibiosim: a tool for the analysis and design of genetic circuits.
Bioinformatics, 25(21):2848–2849, Nov 2009.

[149] Chris J. Myers, Jacob Beal, Thomas E. Gorochowski, Hiroyuki Kuwahara, Curtis Madsen,
James Alastair McLaughlin, Göksel Misirli, Tramy Nguyen, Ernst Oberortner, Meher Sami-
neni, Anil Wipat, Michael Zhang, and Zach Zundel. A standard-enabled workflow for syn-
thetic biology. Biochemical Society Transactions, 45(3):793–803, Jun 2017.

140

[150] Göksel Mısırlı, Jennifer Hallinan, Matthew Pocock, Phillip Lord, James Alastair McLaughlin,
Herbert Sauro, and Anil Wipat. Data integration and mining for synthetic biology design.
ACS synthetic biology, 5(10):1086–1097, Oct 2016.

[151] David Nadeau and Satoshi Sekine. A survey of named entity recognition and classification.
Lingvisticae Investigationes, 30(1):3–26, 2007.

[152] NCBI. Fasta format for nucleotide sequences, Feb 2021.

[153] Bang Viet Nguyen and Min-Yen Kan. Functional faceted web query analysis. In WWW2007,
page 8, 2007.

[154] Tramy Nguyen, Timothy S. Jones, Pedro Fontanarrosa, Jeanet V. Mante, Zach Zundel, Dou-
glas Densmore, and Chris J. Myers. Design of asynchronous genetic circuits. Proceedings of
the IEEE, 107(7):1356–1368, Jul 2019.

[155] Tramy T Nguyen. ASYNCHRONOUS GENETIC CIRCUIT DESIGN. PhD thesis, University
of Utah, Dec 2019.

[156] David Nickerson, Koray Atalag, Bernard de Bono, Jörg Geiger, Carole Goble, Susanne Holl-
mann, Joachim Lonien, Wolfgang Müller, Babette Regierer, Natalie J. Stanford, and et al.
The human physiome: how standards, software and innovative service infrastructures are
providing the building blocks to make it achievable. Interface Focus, 6(2):20150103, Apr
2016.

[157] Alec A. K. Nielsen, Bryan S. Der, Jonghyeon Shin, Prashant Vaidyanathan, Vanya Paralanov,
Elizabeth A. Strychalski, David Ross, Douglas Densmore, and Christopher A. Voigt. Genetic
circuit design automation. Science (New York, N.Y.), 352(6281):aac7341, Apr 2016.

[158] Alec A. K. Nielsen, Bryan S. Der, Jonghyeon Shin, Prashant Vaidyanathan, Vanya Paralanov,
Elizabeth A. Strychalski, David Ross, Douglas Densmore, and Christopher A. Voigt. Genetic
circuit design automation. Science, Apr 2016.

[159] Alireza Noruzi. Application of ranganathan’s laws to the web: the five laws of the web.

[160] Nicolas Le Novère, Andrew Finney, Michael Hucka, Upinder S. Bhalla, Fabien Campagne,
Julio Collado-Vides, Edmund J. Crampin, Matt Halstead, Edda Klipp, Pedro Mendes, Poul
Nielsen, Herbert Sauro, Bruce Shapiro, Jacky L. Snoep, Hugh D. Spence, and Barry L.
Wanner. Minimum information requested in the annotation of biochemical models (miriam).
Nature Biotechnology, 23(12):1509–1515, Dec 2005.

[161] Nicolas Le Novère, Michael Hucka, Huaiyu Mi, Stuart Moodie, Falk Schreiber, Anatoly
Sorokin, Emek Demir, Katja Wegner, Mirit I. Aladjem, Sarala M. Wimalaratne, and et al.
The systems biology graphical notation. Nature Biotechnology, 27(8):735–741, Aug 2009.

[162] Ulrike Obst, Timothy K. Lu, and Volker Sieber. A Modular Toolkit for Generating Pichia
pastoris Secretion Libraries. ACS Synthetic Biology, 6(6):1016–1025, June 2017.

[163] Sandra Orchard, Bissan Al-Lazikani, Steve Bryant, Dominic Clark, Elizabeth Calder, Ian Dix,
Ola Engkvist, Mark Forster, Anna Gaulton, Michael Gilson, Robert Glen, Martin Grigorov,
Kim Hammond-Kosack, Lee Harland, Andrew Hopkins, Christopher Larminie, Nick Lynch,

141

Romeena K. Mann, Peter Murray-Rust, Elena Lo Piparo, Christopher Southan, Christoph
Steinbeck, David Wishart, Henning Hermjakob, John Overington, and Janet Thornton.
Minimum information about a bioactive entity (miabe). Nature Reviews Drug Discovery,
10(9):661–669, Sep 2011.

[164] JSON Schema Org. Implementations.

[165] Jason A. Palmer. pdftotext: Simple pdf text extraction. https://github.com/jalan/

pdftotext.

[166] Irene V. Pasquetto, Christine L. Borgman, and Morgan F. Wofford. Uses and reuses of
scientific data: The data creators’ advantage. Harvard Data Science Review, 1(2), Nov 2019.

[167] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence comparison.
Proceedings of the National Academy of Sciences, 85(8):2444–2448, Apr 1988.

[168] Jean Peccoud, Megan F. Blauvelt, Yizhi Cai, Kristal L. Cooper, Oswald Crasta, Emily C.
DeLalla, Clive Evans, Otto Folkerts, Blair M. Lyons, Shrinivasrao P. Mane, and et al. Targeted
development of registries of biological parts. PloS One, 3(7):e2671, Jul 2008.

[169] Klara Piletič and Tanja Kunej. Minimal standards for reporting microrna:target interactions.
OMICS: A Journal of Integrative Biology, 21(4):197–206, Apr 2017.

[170] Manuel Porcar and Juli Peretó. Are we doing synthetic biology? Systems and Synthetic
Biology, 6(3–4):79–83, Dec 2012.

[171] Eric Prud’hommeaux, Iovka Boneva, Jose Emilio Labra Gayo, and Gregg Kellogg. Shape
expressions language 2.1, Oct 2019.

[172] Priscilla E. M. Purnick and Ron Weiss. The second wave of synthetic biology: from modules
to systems. Nature Reviews Molecular Cell Biology, 10(6):410–422, Jun 2009.

[173] Isabel M. Pötzsch, Jeanet Mante, Jacob Beal, and Chris J. Myers. Creating sbol designs with
excel. In Computational Modeling in Biology Network Forum (COMBINE 2020), Oct 2020.

[174] Benjamin Raimbault, Jean-Philippe Cointet, and Pierre-Benôıt Joly. Mapping the emergence
of synthetic biology. PLOS ONE, 11(9):1–19, 09 2016.

[175] A T Ramitha and J S Jayasudha. Personalization and privacy in profile-based web search.
In 2016 International Conference on Research Advances in Integrated Navigation Systems
(RAINS), page 1–4, May 2016.

[176] S. R. Ranganathan. The Five Laws of Library Science. Madras Library Association (Madras,
India) and Edward Goldston (London, UK), 1931. Accepted: 2006-10-18T00:00:01Z.

[177] Marc L. Resnick and Misha W. Vaughan. Best practices and future visions for search
user interfaces. Journal of the American Society for Information Science and Technology,
57(6):781–787, 2006.

[178] R. S. Richards and A. M. Brown. Coupling between acoustic velocity oscillations and solid
propellant combustion. J. Prop. and Power, 5:828–837, 1982.

https://github.com/jalan/pdftotext
https://github.com/jalan/pdftotext

142

[179] Hajo Rijgersberg, Mark van Assem, and Jan Top. Ontology of units of measure and related
concepts. Semantic Web, 4(1):3–13, Jan 2013.

[180] Nicholas Roehner, Jacob Beal, Kevin Clancy, Bryan Bartley, Goksel Misirli, Raik Grünberg,
Ernst Oberortner, Matthew Pocock, Michael Bissell, Curtis Madsen, Tramy Nguyen, Michael
Zhang, Zhen Zhang, Zach Zundel, Douglas Densmore, John H. Gennari, Anil Wipat, Her-
bert M. Sauro, and Chris J. Myers. Sharing structure and function in biological design with
sbol 2.0. ACS Synthetic Biology, 5(6):498–506, Jun 2016.

[181] Nicholas Roehner, Jeanet Mante, Chris J. Myers, and Jacob Beal. Synthetic biology curation
tools (synbict). ACS synthetic biology, 10(11):3200–3204, Nov 2021.

[182] Marc-Sven Roell and Matias D Zurbriggen. The impact of synthetic biology for future agri-
culture and nutrition. Current Opinion in Biotechnology, 61:102–109, 2020.

[183] Alberto Santos-Zavaleta, Heladia Salgado, Socorro Gama-Castro, Mishael Sánchez-Pérez,
Laura Gómez-Romero, Daniela Ledezma-Tejeida, Jair Santiago Garćıa-Sotelo, Kevin
Alquicira-Hernández, Luis José Muñiz-Rascado, Pablo Peña-Loredo, Cecilia Ishida-Gutiérrez,
David A. Velázquez-Ramı́rez, Vı́ctor Del Moral-Chávez, César Bonavides-Mart́ınez, Carlos-
Francisco Méndez-Cruz, James Galagan, and Julio Collado-Vides. Regulondb v 10.5: Tackling
challenges to unify classic and high throughput knowledge of gene regulation in e. coli k-12.
Nucleic Acids Res., 47(D1):D212–D220, 2018.

[184] Eric W. Sayers, Mark Cavanaugh, Karen Clark, James Ostell, Kim D. Pruitt, and Ilene
Karsch-Mizrachi. Genbank. Nucleic Acids Research, 47(D1):D94 – D99, Jan 2019.

[185] Gary Schindelman, Jolene S. Fernandes, Carol A. Bastiani, Karen Yook, and Paul W. Stern-
berg. Worm phenotype ontology: Integrating phenotype data within and beyond the c.
elegans community. BMC Bioinformatics, 12(1):32, Jan 2011.

[186] Conrad L. Schoch, Stacy Ciufo, Mikhail Domrachev, Carol L. Hotton, Sivakumar Kannan,
Rogneda Khovanskaya, Detlef Leipe, Richard Mcveigh, Kathleen O’Neill, Barbara Rob-
bertse, and et al. Ncbi taxonomy: a comprehensive update on curation, resources and tools.
Database: The Journal of Biological Databases and Curation, 2020:baaa062, Jan 2020.

[187] Lynn M Schriml, Elvira Mitraka, James Munro, Becky Tauber, Mike Schor, Lance Nickle, Vic-
tor Felix, Linda Jeng, Cynthia Bearer, Richard Lichenstein, Katharine Bisordi, Nicole Cam-
pion, Brooke Hyman, David Kurland, Connor Patrick Oates, Siobhan Kibbey, Poorna Sreeku-
mar, Chris Le, Michelle Giglio, and Carol Greene. Human disease ontology 2018 update:
classification, content and workflow expansion. Nucleic Acids Research, 47(D1):D955–D962,
Jan 2019.

[188] B. Shadrach. S r ranganthan’s five laws of library science: A foundation for democratising
knowledge basheerhamad shadrach. Informatics Studies, Jan 2019.

[189] Phili Shapira, Seokbeom Kwon, and Jan Youtie. Tracking the emergence of synthetic biology.
Scientometrics, 112:1439–1469, 2017.

[190] Reshma P. Shetty, Drew Endy, and Thomas F. Knight. Engineering biobrick vectors from
biobrick parts. Journal of Biological Engineering, 2(1):5, Apr 2008.

143

[191] David Shotton. Cito, the citation typing ontology. Journal of Biomedical Semantics, 1(1):S6,
Jun 2010.

[192] Carol Simpson. Editor’s notes. Library Media Connection, page 6, May 2008.

[193] Payam Siyari, Bistra Dilkina, and Constantine Dovrolis. Evolution of hierarchical structure
and reuse in igem synthetic dna sequences. In Joao M. F. Rodrigues, Pedro J. S. Cardoso,
Janio Monteiro, Roberto Lam, Valeria V. Krzhizhanovskaya, Michael H. Lees, Jack J. Don-
garra, and Peter M.A. Sloot, editors, Computational Science - ICCS 2019, Lecture Notes in
Computer Science, pages 468 – 482. Springer International Publishing, 2019.

[194] T. M. Smitty, R. L. Coach, and F. B. Höndra. Unsteady flow in simulated solid rocket motors.
In 16st Aerospace Sciences Meeting, number 0112 in 78. AIAA, 1978.

[195] Christina D. Smolke. Building outside of the box: igem and the biobricks foundation. Nature
Biotechnology, 27:1099 – 1102, Dec 2009.

[196] Michael Snyder, George Mias, Larissa Stanberry, and Eugene Kolker. Metadata checklist for
the integrated personal omics study: Proteomics and metabolomics experiments. Big Data,
1(4):202–206, Dec 2013.

[197] Harold Solbrig. hsolbrig/PyShEx. GitHub, Sep 2020.

[198] Axel J Soto, Piotr Przyby la, and Sophia Ananiadou. Thalia: semantic search engine for
biomedical abstracts. Bioinformatics, 35(10):1799–1801, May 2019.

[199] Paul T. Spellman, Michael Miller, Jason Stewart, Charles Troup, Ugis Sarkans, Steve
Chervitz, Derek Bernhart, Gavin Sherlock, Catherine Ball, Marc Lepage, and et al. Design
and implementation of microarray gene expression markup language (mage-ml). Genome
Biology, 3(9):research0046.1, Aug 2002.

[200] W3C staff members. Examples of rdf validation, 2012.

[201] Christian J Stoeckert, John Quackenbush, Alvis Brazma, and Catherine A Ball. Minimum
information about a functional genomics experiment: the state of microarray standards and
their extension to other technologies. Drug Discovery Today: TARGETS, 3(4):159–164, Aug
2004.

[202] Jonathan Strickland and John Donovan. How google works, May 2019.

[203] Cong Sun, Zhihao Yang, Leilei Su, Lei Wang, Yin Zhang, Hongfei Lin, and Jian Wang.
Chemical-protein Interaction Extraction via Gaussian Probability Distribution and External
Biomedical Knowledge. Bioinformatics, 05 2020. btaa491.

[204] Olivier Taboureau, Sonny Kim Nielsen, Karine Audouze, Nils Weinhold, Daniel Edsgärd,
Francisco S Roque, Irene Kouskoumvekaki, Alina Bora, Ramona Curpan, Thomas Skøt
Jensen, et al. Chemprot: a disease chemical biology database. Nucleic acids research,
39(suppl1):D367–D372, 2010.

[205] Tzu-Chieh Tang, Bolin An, Yuanyuan Huang, Sangita Vasikaran, Yanyi Wang, Xiaoyu Jiang,
Timothy K. Lu, and Chao Zhong. Materials design by synthetic biology. Nature Reviews
Materials, 6(44):332–350, Apr 2021.

144

[206] Joseph D. Taum. Investigation of flow turning phenomenon. In 20th Aerospace Sciences
Meeting, number 0297 in 82. AIAA, 1982.

[207] Chris F Taylor, Dawn Field, Susanna-Assunta Sansone, Jan Aerts, Rolf Apweiler, Michael
Ashburner, Catherine A Ball, Pierre-Alain Binz, Molly Bogue, Tim Booth, Alvis Brazma,
Ryan R Brinkman, Adam Michael Clark, Eric W Deutsch, Oliver Fiehn, Jennifer Fostel,
Peter Ghazal, Frank Gibson, Tanya Gray, Graeme Grimes, John M Hancock, Nigel W
Hardy, Henning Hermjakob, Randall K Julian, Matthew Kane, Carsten Kettner, Christopher
Kinsinger, Eugene Kolker, Martin Kuiper, Nicolas Le Novère, Jim Leebens-Mack, Suzanna E
Lewis, Phillip Lord, Ann-Marie Mallon, Nishanth Marthandan, Hiroshi Masuya, Ruth Mc-
Nally, Alexander Mehrle, Norman Morrison, Sandra Orchard, John Quackenbush, James M
Reecy, Donald G Robertson, Philippe Rocca-Serra, Henry Rodriguez, Heiko Rosenfelder,
Javier Santoyo-Lopez, Richard H Scheuermann, Daniel Schober, Barry Smith, Jason Snape,
Christian J Stoeckert, Keith Tipton, Peter Sterk, Andreas Untergasser, Jo Vandesompele,
and Stefan Wiemann. Promoting coherent minimum reporting guidelines for biological and
biomedical investigations: the mibbi project. Nature biotechnology, 26(8):889–896, Aug 2008.

[208] Chris F Taylor, Dawn Field, Susanna-Assunta Sansone, Jan Aerts, Rolf Apweiler, Michael
Ashburner, Catherine A Ball, Pierre-Alain Binz, Molly Bogue, Tim Booth, et al. Promoting
coherent minimum reporting guidelines for biological and biomedical investigations: the mibbi
project. Nature biotechnology, 26(8):889–896, 2008.

[209] Jessica D Tenenbaum, Susanna-Assunta Sansone, and Melissa Haendel. A sea of standards
for omics data: sink or swim? Journal of the American Medical Informatics Association:
JAMIA, 21(2):200–203, Mar 2014.

[210] Carol Tenopir, Suzie Allard, Kimberly Douglass, Arsev Umur Aydinoglu, Lei Wu, Eleanor
Read, Maribeth Manoff, and Mike Frame. Data sharing by scientists: Practices and percep-
tions. PLOS ONE, 6(6):e21101, Jun 2011.

[211] Logan Terry, Jared Earl, Sam Thayer, Samuel Bridge, and Chris J. Myers. Sbolcanvas: A
visual editor for genetic designs. ACS Synthetic Biology, Jun 2021.

[212] The Gene Ontology Consortium. The gene ontology resource: 20 years and still going strong.
Nucleic Acids Research, 47(D1):D330–D338, Jan 2019.

[213] Philippe Thomas, Johannes Starlinger, Alexander Vowinkel, Sebastian Arzt, and Ulf Leser.
Geneview: a comprehensive semantic search engine for pubmed. Nucleic Acids Research,
40(W1):W585–W591, Jul 2012.

[214] Katherine Thornton, Harold Solbrig, Gregory S. Stupp, Jose Emilio Labra Gayo, Daniel
Mietchen, Eric Prud’hommeaux, and Andra Waagmeester. Correction to: Using shape ex-
pressions (shex) to share rdf data models and to guide curation with rigorous validation. In
Pascal Hitzler, Miriam Fernández, Krzysztof Janowicz, Amrapali Zaveri, Alasdair J.G. Gray,
Vanessa Lopez, Armin Haller, and Karl Hammar, editors, The Semantic Web, Lecture Notes
in Computer Science, page C1–C1. Springer International Publishing, 2019.

[215] Joshua J. Timmons and Doug Densmore. Repository-based plasmid design. PLOS ONE,
15(1):e0223935, Jan 2020.

145

[216] Keith F. Tipton, Richard N. Armstrong, Barbara M. Bakker, Amos Bairoch, Athel Cornish-
Bowden, Peter J. Halling, Jan-Hendrik Hofmeyr, Thomas S. Leyh, Carsten Kettner, Frank M.
Raushel, Johann Rohwer, Dietmar Schomburg, and Christoph Steinbeck. Standards for re-
porting enzyme data: The strenda consortium: What it aims to do and why it should be
helpful. Perspectives in Science, 1(1):131–137, May 2014.

[217] Uriel Urquiza-Garćıa, Tomasz Zieliński, and Andrew J Millar. Better research by efficient
sharing: evaluation of free management platforms for synthetic biology designs. Synthetic
Biology, 4(1):ysz016, 2019.

[218] Uriel Urquiza-Garćıa, Tomasz Zieliński, and Andrew J. Millar. Better research by efficient
sharing: evaluation of free management platforms for synthetic biology designs. Synthetic
Biology (Oxford, England), 4(1):ysz016, 2019.

[219] Allard J van Altena, Perry D Moerland, Aeilko H Zwinderman, and Śılvia D Olabarriaga.
Understanding big data themes from scientific biomedical literature through topic modeling.
Journal of Big Data, 3(1):1–21, 2016.

[220] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

[221] Cristina Vilanova and Manuel Porcar. igem 2.0 - refoundations for engineering biology. Nature
Biotechnology, 32(5):420 – 424, May 2014.

[222] Dagmar Waltemath, Richard Adams, Daniel A. Beard, Frank T. Bergmann, Upinder S.
Bhalla, Randall Britten, Vijayalakshmi Chelliah, Michael T. Cooling, Jonathan Cooper, Ed-
mund J. Crampin, Alan Garny, Stefan Hoops, Michael Hucka, Peter Hunter, Edda Klipp,
Camille Laibe, Andrew K. Miller, Ion Moraru, David Nickerson, Poul Nielsen, Macha Nikol-
ski, Sven Sahle, Herbert M. Sauro, Henning Schmidt, Jacky L. Snoep, Dominic Tolle, Olaf
Wolkenhauer, and Nicolas Le Novère. Minimum information about a simulation experiment
(miase). PLOS Computational Biology, 7(4):e1001122, Apr 2011.

[223] Dagmar Waltemath, Richard Adams, Frank T. Bergmann, Michael Hucka, Fedor Kolpakov,
Andrew K. Miller, Ion I. Moraru, David Nickerson, Sven Sahle, Jacky L. Snoep, and et al.
Reproducible computational biology experiments with sed-ml–the simulation experiment de-
scription markup language. BMC systems biology, 5:198, Dec 2011.

[224] Beibei Wang, Huayi Yang, Jianan Sun, Chuhao Dou, Jian Huang, and Feng-Biao Guo.
Biomaster: An integrated database and analytic platform to provide comprehensive infor-
mation about biobrick parts. Frontiers in Microbiology, 12, 2021.

[225] Leon Weber, Jannes Münchmeyer, Tim Rocktäschel, Maryam Habibi, and Ulf Leser. Huner:
improving biomedical ner with pretraining. Bioinformatics, 36(1):295–302, 2020.

[226] Bifan Wei, Jun Liu, Qinghua Zheng, Wei Zhang, Xiaoyu Fu, and Boqin Feng. A survey of
faceted search. Journal of Web Engineering, 12:25, 2013.

[227] S. Weibel, J. Kunze, C. Lagoze, and M. Wolf. Dublin core metadata for resource discovery,
Sep 1998.

146

[228] Maxwell A Weinzierl, Ramon Maldonado, and Sanda M Harabagiu. The impact of learning
unified medical language system knowledge embeddings in relation extraction from biomedical
texts. Journal of the American Medical Informatics Association, 27(10):1556–1567, 2020.

[229] Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles
Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos,
Philip E. Bourne, Jildau Bouwman, Anthony J. Brookes, Tim Clark, Mercè Crosas, Ingrid
Dillo, Olivier Dumon, Scott Edmunds, Chris T. Evelo, Richard Finkers, Alejandra Gonzalez-
Beltran, Alasdair J.G. Gray, Paul Groth, Carole Goble, Jeffrey S. Grethe, Jaap Heringa,
Peter A.C ’t Hoen, Rob Hooft, Tobias Kuhn, Ruben Kok, Joost Kok, Scott J. Lusher,
Maryann E. Martone, Albert Mons, Abel L. Packer, Bengt Persson, Philippe Rocca-Serra,
Marco Roos, Rene van Schaik, Susanna-Assunta Sansone, Erik Schultes, Thierry Sengstag,
Ted Slater, George Strawn, Morris A. Swertz, Mark Thompson, Johan van der Lei, Erik
van Mulligen, Jan Velterop, Andra Waagmeester, Peter Wittenburg, Katherine Wolstencroft,
Jun Zhao, and Barend Mons. The fair guiding principles for scientific data management and
stewardship. Scientific Data, 3, Mar 2016.

[230] Ulrike Wittig, Renate Kania, Martin Golebiewski, Maja Rey, Lei Shi, Lenneke Jong, Enkh-
jargal Algaa, Andreas Weidemann, Heidrun Sauer-Danzwith, Saqib Mir, and et al. Sabio-rk–
database for biochemical reaction kinetics. Nucleic Acids Research, 40(Database issue):D790–
796, Jan 2012.

[231] Katherine Wolstencroft, Olga Krebs, Jacky L. Snoep, Natalie J. Stanford, Finn Bacall, Martin
Golebiewski, Rostyk Kuzyakiv, Quyen Nguyen, Stuart Owen, Stian Soiland-Reyes, and et al.
Fairdomhub: a repository and collaboration environment for sharing systems biology research.
Nucleic Acids Research, 45(D1):D404–D407, Jan 2017.

[232] Katherine Wolstencroft, Stuart Owen, Matthew Horridge, Simon Jupp, Olga Krebs, Jacky
Snoep, Franco Du Preez, Wolfgang Mueller, Robert Stevens, and Carole Goble. Stealthy
annotation of experimental biology by spreadsheets. Concurrency and Computation: Practice
and Experience, 25(4):467–480, 2013.

[233] Katherine Wolstencroft, Stuart Owen, Olga Krebs, Wolfgang Mueller, Quyen Nguyen, Jacky L
Snoep, and Carole Goble. Semantic data and models sharing in systems biology: The just
enough results model and the seek platform. In International Semantic Web Conference,
pages 212–227. Springer, 2013.

[234] Katy Wolstencroft, Stuart Owen, Matthew Horridge, Olga Krebs, Wolfgang Mueller, Jacky L
Snoep, Franco du Preez, and Carole Goble. Rightfield: embedding ontology annotation in
spreadsheets. Bioinformatics, 27(14):2021–2022, 2011.

[235] Katy Wolstencroft, Stuart Owen, Matthew Horridge, Olga Krebs, Wolfgang Mueller, Jacky L.
Snoep, Franco du Preez, and Carole Goble. Rightfield: embedding ontology annotation in
spreadsheets. Bioinformatics, 27(14):2021 – 2022, Jul 2011.

[236] Cathy H. Wu, Lai-Su L. Yeh, Hongzhan Huang, Leslie Arminski, Jorge Castro-Alvear, Yongx-
ing Chen, Zhangzhi Hu, Panagiotis Kourtesis, Robert S. Ledley, Baris E. Suzek, C. R.
Vinayaka, Jian Zhang, and Winona C. Barker. The protein information resource. Nucleic
Acids Research, 31(1):345–347, Jan 2003.

147

[237] Yongfu Yang, Wei Shen, Ju Huang, Runxia Li, Yubei Xiao, Hui Wei, Yat-Chen Chou, Min
Zhang, Michael E. Himmel, Shouwen Chen, Li Yi, Lixin Ma, and Shihui Yang. Prediction and
characterization of promoters and ribosomal binding sites of zymomonas mobilis in system
biology era. Biotechnology for Biofuels, 12:52, 2019.

[238] Eric M. Young, Zheng Zhao, Bianca E. M. Gielesen, Liang Wu, D. Benjamin Gordon, Jo-
hannes A. Roubos, and Christopher A. Voigt. Iterative algorithm-guided design of massive
strain libraries, applied to itaconic acid production in yeast. Metabolic Engineering, 48:33–43,
July 2018.

[239] Eric Yu, Jeanet Mante, and Chris J. Myers. Sequence-based searching for synbiohub using
vsearch. ACS Synthetic Biology, 11(2):990–995, Feb 2022.

[240] Tommy Yu, Catherine M. Lloyd, David P. Nickerson, Michael T. Cooling, Andrew K. Miller,
Alan Garny, Jonna R. Terkildsen, James Lawson, Randall D. Britten, Peter J. Hunter, and
et al. The physiome model repository 2. Bioinformatics (Oxford, England), 27(5):743–744,
Mar 2011.

[241] Guillermo Yáñez Feliú, Benjamı́n Earle Gómez, Verner Codoceo Berrocal, Macarena
Muñoz Silva, Isaac N. Nuñez, Tamara F. Matute, Anibal Arce Medina, Gonzalo Vidal, Car-
los Vidal Céspedes, Jonathan Dahlin, Fernán Federici, and Timothy J. Rudge. Flapjack:
Data management and analysis for genetic circuit characterization. ACS Synthetic Biology,
10(1):183–191, Jan 2021.

[242] Amrapali Zaveri, Wei Hu, and Michel Dumontier. Metacrowd: Crowdsourcing biomedical
metadata quality assessment. Human Computation, 6:98–112, Sep 2019.

[243] Robert A. Zeddini. Injection-induced flows in porous-walled ducts. AIAA Journal, 14:766–
773, 1981.

[244] Zhen Zhang, Tramy Nguyen, Nicholas Roehner, Göksel Misirli, Matthew Pocock, Ernst
Oberortner, Meher Samineni, Zach Zundel, Jacob Beal, Kevin Clancy, Anil Wipat, and
Chris J. Myers. libsbolj 2.0: A java library to support sbol 2.0. IEEE Life Sciences Letters,
1(4):34–37, Dec 2015.

[245] Yun Zhou and W. Bruce Croft. Query performance prediction in web search environments.
In Proceedings of the 30th annual international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’07, page 543–550. Association for Computing
Machinery, Jul 2007.

[246] Tomasz Zieliński, Johnny Hay, Andrew Romanowski, Anja Nenninger, Alistair McCormick,
and Andrew J Millar. Synbio2easy—a biologist-friendly tool for batch operations on sbol
designs with excel inputs. Synthetic Biology, 7(1):ysac002, Oct 2022.

[247] Ann Zimmerman. Not by metadata alone: the use of diverse forms of knowledge to locate
data for reuse. International Journal on Digital Libraries, 7(1):5–16, Oct 2007.

[248] Anneke Zuiderwijk, Rhythima Shinde, and Wei Jeng. What drives and inhibits researchers to
share and use open research data? a systematic literature review to analyze factors influencing
open research data adoption. PLOS ONE, 15(9):e0239283, Sep 2020.

148

[249] Zach Zundel, Meher Samineni, Zhen Zhang, and Chris J. Myers. A validator and converter
for the synthetic biology open language. ACS Synthetic Biology, 6(7):1161–1168, Jul 2017.

[250] Marko Ćurković and Andro Košec. Bubble effect: including internet search engines in system-
atic reviews introduces selection bias and impedes scientific reproducibility. BMC Medical
Research Methodology, 18(1):130, Nov 2018.

[251] Radim Řeh̊uřek. Gensim: Topic modelling for humans. https://radimrehurek.com/

gensim/index.html.

https://radimrehurek.com/gensim/index.html
https://radimrehurek.com/gensim/index.html

Appendix A

Supplemental iGEM Figures

• Figure A.1: Variation in different part description field lengths over different iGEM years.

• Figure A.2: Variation in part submission and description by month and year. a) The

number of submissions being made per month. The spikes indicate the approximate time

of the jamboree each year. b) Part Description Variation by Month.

• Figure A.3: Variation in the average part description field lengths over time for three

different iGEM submission groups. No clear pattern is visible here or in any of the simple

scatter plots.

150

Figure A.1: Variation in different part description field lengths over different iGEM years. The
outlier of 2003 is assumed to be due to the very small number of teams at that time.

151

(a)

(b)

Figure A.2: Variation in part submission and description by month and year. a) The number
of submissions being made per month. The spikes indicate the approximate time of the jamboree
each year. b) Part Description Variation by Month. There are no clear indicators of correlation
between the month of the year, or the time till jamboree so no further statistics were run.

152

Figure A.3: Variation in the average part description field lengths over time for three different
iGEM submission groups. No clear pattern is visible here or in any of the simple scatter plots.
Further analysis is needed to make statements about correlation. The full data for all groups is
available in the supplemental information.

Appendix B

GitHub Repositories

A list of GitHub Repositories used in this work.

B.1 Plugins

• Test:

∗ https://github.com/SynBioHub/Plugin-Submit-Test

∗ https://github.com/SynBioHub/Plugin-Visual-Test

∗ https://github.com/SynBioHub/Plugin-Visual-Serve-Test

∗ https://github.com/SynBioHub/Plugin-Download-Test

∗ https://github.com/SynBioHub/Plugin-Curation-Test

∗ https://github.com/SynBioHub/Plugin-Search-Test

∗ https://github.com/SynBioHub/Plugin-Index-Test

∗ https://github.com/SynBioHub/Plugin-Link-Test

∗ https://github.com/SynBioHub/Plugin-Submit-Test-js

∗ https://github.com/SynBioHub/Plugin-Visual-Test-js

∗ https://github.com/SynBioHub/Plugin-Visual-Serve-Test-js

∗ https://github.com/SynBioHub/Plugin-Download-Test-js

• Docker and Postman:

https://github.com/SynBioHub/Plugin-Submit-Test
https://github.com/SynBioHub/Plugin-Visual-Test
https://github.com/SynBioHub/Plugin-Visual-Serve-Test
https://github.com/SynBioHub/Plugin-Download-Test
https://github.com/SynBioHub/Plugin-Curation-Test
https://github.com/SynBioHub/Plugin-Search-Test
https://github.com/SynBioHub/Plugin-Index-Test
https://github.com/SynBioHub/Plugin-Link-Test
https://github.com/SynBioHub/Plugin-Submit-Test-js
https://github.com/SynBioHub/Plugin-Visual-Test-js
https://github.com/SynBioHub/Plugin-Visual-Serve-Test-js
https://github.com/SynBioHub/Plugin-Download-Test-js

154

∗ https://github.com/SynBioHub/Postman

∗ https://github.com/SynBioHub/Docker-base-python

• Submit:

∗ https://github.com/SynBioHub/Plugin-Submit-ShortBOL

∗ https://github.com/SynBioHub/Plugin-Submit-Snapgene

• Visualization:

∗ https://github.com/SynBioHub/Plugin-Visual-ProteinStructure

∗ https://github.com/SynBioHub/Plugin-Visual-Igem

∗ https://github.com/SynBioHub/Plugin-Visual-VisBOL-Js

∗ https://github.com/SynBioHub/Plugin-Visual-Seqviz

∗ https://github.com/SynBioHub/Plugin-Visual-Component-Use

• Download:

∗ https://github.com/SynBioHub/Plugin-Download-iBioSim

∗ https://github.com/SynBioHub/Plugin-Download-ShortBOL

∗ https://github.com/SynBioHub/Plugin-Download-Snapgene

• Curation:

∗ https://github.com/SynBioHub/Plugin-Curation-Synbict

B.2 Excel-SBOL

• https://github.com/SynBioDex/Excel-to-SBOL

• https://github.com/SynBioDex/SBOL-to-Excel

• https://github.com/SynBioHub/Plugin-Submit-Excel2SBOL

https://github.com/SynBioHub/Postman
https://github.com/SynBioHub/Docker-base-python
https://github.com/SynBioHub/Plugin-Submit-ShortBOL
https://github.com/SynBioHub/Plugin-Submit-Snapgene
https://github.com/SynBioHub/Plugin-Visual-ProteinStructure
https://github.com/SynBioHub/Plugin-Visual-Igem
https://github.com/SynBioHub/Plugin-Visual-VisBOL-Js
https://github.com/SynBioHub/Plugin-Visual-Seqviz
https://github.com/SynBioHub/Plugin-Visual-Component-Use
https://github.com/SynBioHub/Plugin-Download-iBioSim
https://github.com/SynBioHub/Plugin-Download-ShortBOL
https://github.com/SynBioHub/Plugin-Download-Snapgene
https://github.com/SynBioHub/Plugin-Curation-Synbict
https://github.com/SynBioDex/Excel-to-SBOL
https://github.com/SynBioDex/SBOL-to-Excel
https://github.com/SynBioHub/Plugin-Submit-Excel2SBOL

155

• https://github.com/SynBioHub/Plugin-Download-SBOL2Excel

• https://github.com/SynBioHub/Plugin-Submit-Excel-Composition

• https://github.com/SynBioHub/Plugin-Submit-Excel-Library

• https://github.com/SynBioHub/Plugin-Visual-Flapjack

B.3 Post-hoc Curation

• iGEM work: https://github.com/JMante1/iGem-Data-Cleaning

• ACS work:

∗ https://github.com/synbioks/SynBioBERT

∗ https://github.com/synbioks/ACS-XML-to-text

∗ https://github.com/synbioks/SPARQL-queries-ACS-Synbio

∗ https://github.com/synbioks/sequence_supplementals

∗ https://github.com/synbioks/Text-Mining-NLP

• Addgene Work: https://github.com/JMante1/Addgene-Annotation

https://github.com/SynBioHub/Plugin-Download-SBOL2Excel
https://github.com/SynBioHub/Plugin-Submit-Excel-Composition
https://github.com/SynBioHub/Plugin-Submit-Excel-Library
https://github.com/SynBioHub/Plugin-Visual-Flapjack
https://github.com/JMante1/iGem-Data-Cleaning
https://github.com/synbioks/SynBioBERT
https://github.com/synbioks/ACS-XML-to-text
https://github.com/synbioks/SPARQL-queries-ACS-Synbio
https://github.com/synbioks/sequence_supplementals
https://github.com/synbioks/Text-Mining-NLP
https://github.com/JMante1/Addgene-Annotation

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by ProQuest LLC ().
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

Microform Edition where available © ProQuest LLC. No reproduction or digitization
of the Microform Edition is authorized without permission of ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346 USA

29161019

2022

	Introduction
	Synthetic Biology Workflow
	Contributions
	Dissertation Outline

	Background
	Genetic Components
	Standards
	Repositories
	Metadata in Databases
	Library Science Principles
	Minimum Information Standards

	Automated Curation
	Search
	Terminology Equivalence

	The Extension of SynBioHub via a Plugin Interface
	Plugin Specification
	Submit
	Visualization
	Download

	Plugin Templates
	Templates and Docker
	Python Templates
	JavaScript Templates

	New Plugin Specifications
	Curation
	Search
	Index
	Link

	Example Plugins
	Further Work

	Excel-SBOL Converter
	Excel-to-SBOL Evolution
	Iteration 1: Fixed Column Templates
	Iteration 2: Flexible Column Templates
	Iteration 3: Multi-Library Templates

	Excel-to-SBOL Case Study
	SBOL-to-Excel
	SBOL-to-Excel Case Study
	Submit and Download Plugins
	Conclusions

	Post Hoc Curation
	Post-Hoc Curation Pipeline
	Example Applications of the Post-hoc Curation Pipeline
	iGEM
	ACS Dataset
	Addgene

	Conclusions

	A Structure for Integrated Curation
	The SBOL Data Content Standard
	Research Workflow with Integrated Curation
	Realization of the Integrated Curation Workflow
	Plugins
	Excel-SBOL Converter

	Challenges for the Integrated Curation Workflow
	Gaps Between Workflow Stages
	Resistance to Uptake

	Conclusions
	Summary
	Future Work
	Plugins
	Search
	User Interface Development
	Excel Templates
	Further Curation Libraries
	Further Curation of iGEM, ACS, and Addgene Libraries
	SBOL Data Content Standard Extension
	Framework to Assess Data Reuse
	Community Uptake

	 Bibliography
	Supplemental iGEM Figures
	GitHub Repositories
	Plugins
	Excel-SBOL
	Post-hoc Curation

