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ABSTRACT

Over the past few decades, synthetic biology has generated great interest to biologists

and engineers alike. Synthetic biology combines the research of biology with the engineer-

ing principles of standards, abstraction, and automated construction with the ultimate

goal of being able to design and build useful biological systems. To realize this goal,

researchers are actively working on better ways to model and analyze synthetic genetic

circuits, groupings of genes that influence the expression of each other through the use of

proteins. When designing and analyzing genetic circuits, researchers are often interested in

building circuits that exhibit a particular behavior. Usually, this involves simulating their

models to produce some time series data and analyzing this data to discern whether or not

the circuit behaves appropriately. This method becomes less attractive as circuits grow

in complexity because it becomes very time consuming to generate a sufficient amount of

runs for analysis. In addition, trying to select representative runs out of a large data set is

tedious and error-prone thereby motivating methods of automating this analysis. This has

led to the need for design space exploration techniques that allow synthetic biologists to

easily explore the effect of varying parameters and efficiently consider alternative designs

of their systems.

This dissertation attempts to address this need by proposing new analysis and verifi-

cation techniques for synthetic genetic circuits. In particular, it applies formal methods

such as model checking techniques to models of genetic circuits in order to ensure that

they behave correctly and are as robust as possible for a variety of different inputs and/or

parameter settings. However, model checking stochastic systems is not as simple as model

checking deterministic systems where it is always known what the next state of the system

will be at any given step. Stochastic systems can exhibit a variety of different behaviors

that are chosen randomly with different probabilities at each time step. Therefore, model

checking a stochastic system involves calculating the probability that the system will

exhibit a desired behavior. Although it is often more difficult to work with the probabilities

that stochastic systems introduce, stochastic systems and the models that represent them



are becoming commonplace in many disciplines including electronic circuit design where

as parts are being made smaller and smaller, they are becoming less reliable.

In addition to stochastic model checking, this dissertation proposes a new incremental

stochastic simulation algorithm (iSSA) based on Gillespie’s stochastic simulation algo-

rithm (SSA) that is capable of presenting a researcher with a simulation trace of the

typical behavior of the system. Before the development of this algorithm, discerning this

information was extremely error-prone as it involved performing many simulations and

attempting to wade through the massive amounts of data. This algorithm greatly aids

researchers in designing genetic circuits as it efficiently shows the researcher the most

likely behavior of the circuit.

Both the iSSA and stochastic model checking can be used in concert to give a researcher

the likelihood that the system will exhibit its most typical behavior. Once the typical

behavior is known, properties for nontypical behaviors can be constructed and their

likelihoods can also be computed. This methodology is applied to several genetic circuits

leading to new understanding of the effects of various parameters on the behavior of these

circuits.
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CHAPTER 1

INTRODUCTION

One of the great mysteries in our world is how biological systems work. Many re-

searchers and scientists interested in finding answers to this problem have adopted the

paradigm of systems biology. Systems biology is a field of study that focuses on explaining

systems-level behavior by examining component-level interactions. Researchers taking

this view attempt to identify the function of individual components in the system they

are studying and use this information to explain how the functions of interconnected

components can lead to the behavior that is observed by the entire system.

Another field in the realm of biology that has given researchers insight into how

biological systems work is genetic engineering. Genetic engineering is a discipline that

attempts to modify an organism’s DNA in order to either determine how the modified

parts affect the organism or to cause the organism to exhibit a new behavior. This

modification is accomplished through the use of recombinant DNA, the construction of

artificial DNA through combinations; polymerase chain reaction, the process of making

copies of DNA; and automated sequencing, the act of checking a DNA sequence to ensure

that it contains the desired sequence.

In recent years, there has been great interest in designing new useful biological systems

instead of simply trying to understand how they work. In order to accomplish this

goal, researchers have taken ideas from both systems biology and genetic engineering and

combined them with the engineering principles of standards, abstraction, and automated

construction to design and build biological systems leading to the creation of the field

of synthetic biology [6, 23]. Some applications of this field include enabling designed

biological systems to consume toxic waste [15], hunt and kill tumor cells [4], and produce

drugs [73] and biofuels [7]. To realize these goals, researchers are actively working on

better ways to model and analyze synthetic genetic circuits, groupings of genes that

influence the expression of each other through the use of proteins. When designing and

analyzing genetic circuits, researchers are often interested in building circuits that exhibit
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a particular behavior. Usually, determining a circuit’s behavior involves simulating a

model to produce some time series data and analyzing this data to discern whether or not

the circuit behaves appropriately. This method becomes less attractive as circuits grow

in complexity because it ends up becoming very time consuming to generate a sufficient

amount of runs for analysis. In addition, trying to select representative runs out of a large

data set is tedious and error-prone motivating methods of automating this analysis. These

problems have led to the need for design space exploration techniques that allow synthetic

biologists to easily explore the effect of varying parameters in their systems and efficiently

consider alternative designs of their systems.

1.1 Modeling and Analysis

The modeling and analysis of biological systems has been of great interest to researchers

in synthetic biology. Many different models and methods have been proposed to represent

and analyze genetic systems [47]. Probably the most prevalent modeling language for

representing genetic networks is the Systems Biology Markup Language (SBML) [46].

SBML allows users to describe the species of a network and how those species interact with

each other through reactions. In addition, SBML allows users to add special functions to

their model such as constraints, events, and rules.

The most common method of analyzing a biological system is to represent it as an

ordinary differential equation (ODE) model and analyze the ODE using simulation. This

analysis is typically done by translating the list of chemical species and chemical reactions

into an ODE model using the law of mass action [83]. This type of analysis gives

reasonably accurate results for models where the number of chemical species is large

and continuous and reactions occur deterministically, which is the case in many biological

systems. However, genetic circuits typically have very small, discrete molecule counts and

reactions that fire sporadically leading to inaccurate ODE analysis results [61].

Due to their stochastic nature, genetic circuits must be simulated with stochastic

analysis methods in order to yield satisfactory results. One such method developed for

this task is Gillespie’s stochastic simulation algorithm (SSA) [33] which is the cornerstone

behind nearly all stochastic simulation methods involving chemical species today. At its

core, the SSA is a Monte Carlo simulation algorithm that effectively deals with the small,

discrete species counts and random firing times of reactions by stepping over time steps

where no reactions occur.
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Because simulating with the SSA can be very computationally intensive, the SSA has

been further improved in a variety of ways. The original SSA has complexity O(n) where n

is the number of reactions in the system. This complexity is due to the algorithm needing

to loop over all of the reactions in each step. If the first-reaction method [32] is used,

then the algorithm must draw a random number for each reaction in the system during

this loop which can be a very costly procedure. In order to mitigate this expensive step,

the direct method [33] has been developed and only requires two random numbers to be

drawn per loop. The SSA’s efficiency can be improved further by using a dependency

graph and a priority queue to store the reactions as in Gibson and Bruck’s Next Reaction

Method [30]. After each step of the SSA, the algorithm only needs to update the priority

queue leading to a complexity of O(log n). The efficiency of the SSA can be improved even

further yielding a constant time algorithm known as the composition/rejection (SSA-CR)

method [75]. This method utilizes a technique known as composition and rejection, which

is accomplished by grouping reactions with similar propensities together (the composition

step). Then, a reaction is randomly selected from one of the groups and the algorithm

determines whether this reaction should be fired or a new one should be selected (the

rejection step).

Sometimes, simulating only one reaction at a time still requires an exorbitant amount

of simulation time. To further improve simulation efficiency, the tau-leaping method can

be used to fire multiple reactions in each time increment [14, 35, 36]. The main problem

with tau-leaping is it can be difficult to select a good value of tau. If it is too small, there

is not much gain in simulation efficiency, but if tau is too large, then the simulation can

give erroneous results as species counts can go below zero.

Even with tau-leaping, many systems with both fast and slow reactions, also known

as stiff chemical systems, perform poorly. Slow-scale SSA (ssSSA) is an efficient approach

to dealing with such systems [13]. It proceeds by simulating only the slow reactions

and uses specially modified propensity functions to take into account the fast reactions.

Although ssSSA is an approximation of the exact methods, it has been shown to decrease

simulation time when compared to the exact SSA by two to three orders of magnitude,

with no perceptible loss of simulation accuracy.

In order to obtain more gains in simulation efficiency, reaction-based abstractions can

be applied to genetic circuits [56, 53]. By using assumptions like the quasi-steady-state

assumption [74], the system can be simplified down to significantly fewer species and
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reactions. These abstractions lead to some loss of accuracy when the abstracted model

is simulated; however, as long as the abstractions are applied correctly, the gains in

simulation efficiency typically greatly outweigh this loss as the loss is usually very small

to the point of being insignificant. In addition, as models of biological systems grow in

complexity, abstractions become absolutely necessary in order to enable simulation and

analysis techniques to be applied to the models.

Stochastic simulation of genetic circuits can be extremely time consuming even when

considering various improvements to the SSA. In addition, simulation alone does not

explicitly give the probability of the system reaching a particular state in its execution

prompting researchers to perform many simulation runs and to compare the data and

record which states the network ended up in. If a particular event rarely occurs in

the system, then this method requires an enormous amount of simulation runs. This

requirement has led to the development of the weighted SSA (wSSA) [55], which uses

importance sampling techniques to determine the probability of rare events occurring.

In addition to using simulation to determine event probabilities, methods to compute

the system’s event probabilities directly have been developed. Indeed, model checking

approaches have been applied to biological models to check whether or not the system

behaves as expected [5, 11, 42]. The first of these methods involve the use of qualitative

logical models of genetic circuits generated by hand [78, 80], but producing these models is

time consuming and error prone and they are incapable of yielding quantitative predictions

of behavior. To address this problem, methods for generating a quantitative logical model

that encodes the infinite state space of a genetic circuit into a finite number of logical

levels for each chemical species have been developed [56, 53]. The resulting quantitative

logical models can be thought of as Markov chains. Over the years, there have been many

methods developed for analyzing finite state Markov chains [19, 20, 48, 57]. However, most

interesting models are of systems that have infinite state spaces leading to abstraction

techniques that can handle infinite state Markov chains with discrete time [1, 2, 3, 71,

24, 25, 26, 52]. Additionally, since the real world works in continuous-time, most recent

research has focused on continuous-time Markov chains [72].

In order to deal with infinite state space continuous-time Markov chains, techniques

have been developed that effectively transform the Markov chain into a discrete time

finite state model. Many methods explore the chain up to a specified depth as they try to

approximate the system [39, 63, 16]. Others perform this exploration but are capable of
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dynamically exploring more of the chain if the explored states do not satisfy a desired level

of percision [10]. Finally, some methods attempt to explore the infinite chain in sections

and use a sliding window to move to different sections of the chain as necessary [43].

Infinite state space and continuous-time are not the only problems that have been

encountered when analyzing Markov chains. Similar to stiff reaction networks, some

Markov chains are stiff because they contain both fast and slow states and methods have

been developed to approximate the chain with a nonstiff equivalent [9]. Additionally, it can

often be difficult to approximate rare event probabilities [62] or probabilities of events in

noisy systems [21]. Some research also focuses on hybrid analysis methods where Markov

chains are analyzed with both stochastic and deterministic techniques [44].

After a circuit has been abstracted into the logical representation of a computationally

tractable Markov chain, it can be efficiently analyzed using stochastic model checking [58]

to quickly compare the robustness of alternative circuit designs and evaluate different

design trade-offs. Stochastic model checking is a technique that utilizes either statistical

(simulation) or numerical (Markov chain analysis) techniques to determine the probability

that a system has a specified property [85].

Another approach is to abstract the network into a Bayesian network [69]. These

networks are probabilistic graphical models that represent each variable in the system as

a random variable with conditional dependencies on the other variables in the system.

Bayesian network analysis is typically used in network learning applications [28]; however,

there have been some approaches that attempt to create Bayesian networks from ODE

analysis of different systems [59].

1.2 Contributions

This dissertation presents the idea of a new, adaptive incremental stochastic simu-

lation algorithm (iSSA) that is a variant of the SSA and that can aid researchers in

determining a system’s typical behavior. Additionally, this dissertation presents the use

of verification techniques to analyze genetic circuits to determine the likelihood that they

exhibit a desired property. Due to their stochastic nature, however, genetic circuits do not

lend themselves to traditional verification methods. As such, stochastic model checking

techniques leveraging Markov chain analysis are utilized to obtain the desired results.

The main contributions of this research are the development of methods to more

efficiently perform stochastic analysis and design space exploration of genetic circuits.

These contributions include:
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• The development of an iSSA.

• The translation of genetic circuits into CTMCs, and the application of stochastic

model checking techniques to the resulting CTMC in order to determine the likeli-

hood that a system exhibits an interesting behavior.

• The evaluation of these methods by their application to some interesting models

including, among others, various genetic oscillators and state-holding gates.

An example work flow of using these methods in concert to analyze a genetic circuit

is shown in Figure 1.1. Here, a genetic circuit is both simulated using the iSSA and

abstracted using logical abstraction. Next, a property representing the typical behavior of

the system is determined from the iSSA results and sent to the stochastic model checker

along with the resulting CTMC from logical abstraction. Finally, the output of this work

flow is the probability that the circuit exhibits its typical behavior or, perhaps even more

interesting, the probability that it does not.

This work has been integrated into the tool iBioSim [65]. This tool is freely available

to the public for download at http://www.async.ece.utah.edu/iBioSim/.

1.3 Dissertation Outline

This dissertation is organized as follows. Background information on genetic circuits

is presented in Chapter 2. This chapter gives a brief overview of what makes up a genetic

Synthetic
Genetic
Circuit

//

²²

Incremental
Stochastic Simulation

Algorithm
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Typical
Behavior
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Figure 1.1: An example work flow of using iSSA, logical abstraction, and stochastic
model checking to determine the likelihood of a system exhibiting its typical behavior.
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circuit and describes how synthetic biology techniques are used to engineer a synthetic

genetic circuit.

Chapter 3 describes how to model a genetic circuit as a chemical reaction network

and discusses various simulation and analysis methods that have been applied to genetic

circuits. This chapter concludes by discussing various model abstraction techniques that

are useful for the iSSA and stochastic model checking methods presented in later chapters.

Chapter 4 presents a new simulation method known as the iSSA which is a variant

of the SSA. This chapter gives the intuition behind this algorithm and describes several

variations to the algorithm. These variants are then compared by using them to analyze

an example model.

In Chapter 5, a methodology for abstracting genetic circuits to logical models is

presented. Additionally, this chapter describes how this logical model can be augmented

with transition rates resulting in a probabilistic model and explains how stochastic model

checking can be used to analyze the model. Similar to the previous chapter, this method-

ology is then used to analyze an example model.

Case studies illustrating the utility of using both iSSA and stochastic model checking

in concert to perform design space exploration are presented in Chapter 6. This chapter

uses these methods to analyze several oscillator circuits and state holding gates and wraps

up by presenting analysis of a synthetic genetic circuit for a quorum trigger.

Finally, Chapter 7 concludes this dissertation by giving a summary of the work and

by presenting possible future research directions.



CHAPTER 2

GENETIC REGULATORY CIRCUITS

All living organisms are composed of one or more cells, and each of these cells carries

out specialized functions in order to keep the organism alive. There are networks within

the cell called genetic regulatory circuits which help regulate the amount of proteins that

are synthesized from the cell’s genes. This regulation can be used to signal when the cell

should divide, when the cell should take in nutrients from the environment, when the cell

should change to a defensive state, and when the cell should die, among other behaviors.

Understanding these circuits can give synthetic biologists greater insight into why cells

behave as they do and can in turn lead to better engineered synthetic genetic circuits. The

goal of this chapter is to give a brief overview of how genetic regulatory circuits operate

within a cell and how they can be synthetically created. Section 2.1 details the processes

known as transcription and translation which is how proteins are ultimately produced from

genes. Section 2.2 describes how gene regulation occurs through interactions of DNA,

RNA, proteins, and other small molecules. Section 2.3 briefly presents how synthetic

genetic circuits are synthesized and inserted into a cell in a wet-lab environment.

2.1 Transcription and Translation

Most biological functions are facilitated through the use of biochemical compounds

known as proteins. Indeed, the overall state of the cell can often be discerned simply

by measuring the concentrations of different proteins within a cell. For example, some

proteins known as enzymes can affect how fast certain reactions occur in the cell and

their presence may indicate that the cell is in an unstable state whereas other proteins

can provide support for the cell and may indicate that it is in a stable state. Most of the

time, proteins within a cell are produced by the transcription and translation of the genes

located within the cell’s deoxyribonucleic acid (DNA).

DNA is a nucleic acid located within the nucleus of a cell that contains the genetic

instructions for how an organism should develop and behave. It is composed of two strands



9

known as the sense and the antisense strands that contain a sequence of the four bases

adenine (A), cytosine (C), guanine (G), and thymine (T). These bases have an affinity to

bind to each other and pair up such that A only binds with T and G only binds with C

and vice versa. Due to this binding, the two strands connect to each other and the DNA

forms a double helix structure.

Sequences of the DNA bases can code for various genetic components including genes.

Genes encode the instructions for the production of ribonucleic acids (RNAs) which

are single-stranded nucleic acids. Many of these RNAs contain the instructions for the

construction of proteins and are known as messenger RNA (mRNA). The process of

producing mRNA from the genes on the DNA is known as transcription and begins when

an enzyme known as RNA polymerase (RNAP) binds to a region of the DNA near a

gene known as a promoter. The RNAP then temporarily breaks the bonds holding the

two strands of DNA together which causes the DNA to unwind or unzip. During this

unwinding, the RNAP walks along the DNA sequence that codes for the gene building

up the mRNA one base pair at a time as shown in Figure 2.1. As seen in this figure,

the mRNA is made up of the same base pairs as DNA except that thymine is replaced

by uracil (U), an unmethylated form of thymine. This process continues until the RNAP

reaches a region of the DNA known as a terminator. At this point, the RNAP detaches

from the DNA, the newly formed mRNA is released, and the DNA winds back up again

to reform the double helix.

Once transcription is complete, the mRNA is transported out of the cell’s nucleus and

into its cytoplasm where it is free to interact with ribosomes, protein-RNA complexes

located within the cell. This interaction is called translation and eventually leads to the

production of a protein. Figure 2.2 depicts the process of translation. Ribosomes bind to

groups of three bases on the mRNA known as codons which code for one of twenty-one

amino acids. Once the ribosome binds, the appropriate amino acid is delivered to the

ribosome with the help of transport RNA (tRNA). The amino acids are then chained

together in a sequence which eventually produces a protein.

The combination of transcription and translation to first convert DNA into mRNA

and then convert the mRNA into proteins in known as the central dogma of molecular

biology [18]. It is this dogma that allows for the function of genetic circuits. However,

these steps alone do not allow for proteins to interact and affect each other.
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Figure 2.1: Diagram illustrating the process of transcription. RNAP walks along the
unwound DNA to build up a strand of mRNA. This mRNA can later be translated into
a protein through the process of translation. (Courtesy of the National Human Genome
Research Institute)

2.2 Genetic Regulation

With no regulation, each gene in a genetic circuit is transcribed and translated to

produce proteins at an unrestrained rate which ultimately leads to cells being unable to

function. In fact, having too high of a concentration of some proteins can even lead to

cellular death. For this reason and many others, genetic circuits contain mechanisms for

regulating the amount of each protein that is produced in a cell.

There are many steps in the transcription and translation cycle where regulation can

occur. For example, there are tiny RNAs known as micro RNAs (miRNAs) that can

bind with mRNA to prevent the translation of the mRNA into proteins. These same

miRNAs can also bind directly with DNA to prevent RNAP from transcribing a particular

gene. However, in general, genetic regulation refers to regulation of transcription through

the use of transcription factors. A transcription factor is typically a regulatory protein

that binds to an operator site, an area of DNA near a promoter. By doing so, the

transcription factor ends up either blocking RNAP from initiating transcription (in this
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Figure 2.2: Diagram illustrating the process of translation. Following transcription, the
newly formed mRNA is transported outside of the nucleus into the cytoplasm. Here,
ribosomes bind to codons on the mRNA and signal tRNA to bring the appropriate amino
acid. These amino acids are then chained together to create a protein. (Courtesy of the
National Human Genome Research Institute)

case the transcription factor is known as a repressor) or attracting RNAP to the promoter

to initiate transcription (in this case the transcription factor is known as an activator).

For convenience, the functions Rep(p) and Act(p) return the transcription factors that

repress and activate promoter p, respectively. Additionally, the set of proteins that are

produced from the transcription and translation of genes that are downstream from a

promoter p can be determined by using the function Prod(p).

In addition to regulation through transcription factors, there are small molecules

located within a cell that can also influence gene activity. These molecules, known as

chemical inducers, bind to transcription factors to form complexes in order to prevent

them from either activating or repressing the promoters that they are typically associated

with. This interaction could be viewed as repression or activation depending on the

type of transcription factor it is influencing. However, there are also instances where the
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presence of chemical inducers is necessary because the complexes that are formed act as

transcription factors for other promoters. In this situation, one could think of the chemical

inducer as assisting in either activation or repression.

An example of a genetic regulatory circuit representing the genetic toggle switch

described in [29] is shown in Figure 2.3. This circuit has two stable states: either LacI

is high and TetR is low (the OFF state) or LacI is low and TetR is high (the ON state).

To switch from one stable state to the other, the values of IPTG and aTc can be altered.

In 2000, Gardner et al. successfully designed and constructed this circuit and inserted it

into Escherichia coli bacteria where they were able to observe this switch-like behavior.

For simplicity’s sake, the steps of transcription and translation have been collapsed into

a single step where a gene simply produces proteins instead of producing mRNA that

would then have to be translated to produce the proteins in Figure 2.3. In this figure,

Prod(Ptrc−2) returns TetR and green fluorescent protein (GFP), a reporter that causes the

cell to glow indicating whether the toggle is in the ON or OFF state, while Prod(PLtetO−1)

returns LacI. The LacI protein is returned by Rep(Ptrc−2) as it binds to the operator site

associated with the Ptrc−2 promoter to repress the production of TetR and GFP. Similarly,

the TetR protein is returned by Rep(PLtetO−1) as it binds to the operator site associated

with the PLtetO−1 promoter to repress the production of LacI. The other molecules in the

diagram, IPTG and aTc, are chemical inducers. IPTG represses LacI’s ability to act as a

repressor by binding with it to form a complex, C1, preventing LacI from being able to

repress TetR production. Similarly, aTc represses TetR’s ability to act as a repressor by

binding with it to form a complex, C2, preventing TetR from being able to repress LacI

production.

2.3 Synthesis of Genetic Circuits

In order to build a synthetic genetic circuit and insert it into a cell, researchers follow

some basic steps. First, the researchers design a useful circuit. For example, the circuit

in Figure 2.3 can be used as a switch where a researcher can set it into the OFF state

by supplying it with aTc and then can observe whether or not a medium contains IPTG

by observing whether or not the circuit switches to the ON state when placed in the

medium. The next step of the process is to query a database of genetic parts such as

the Registry of Standard Biological Parts [12] to determine if it contains suitable

parts that can be stitched together to create the designed circuit. If all the parts are in
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Figure 2.3: The genetic toggle switch circuit where LacI and TetR repress each other
(denoted by the ⊣ arrows). In this circuit, LacI can be sequestered by IPTG, TetR can be
sequestered by aTc, and GFP is the reporter protein causing the cell to glow indicating
whether the toggle is in the ON or OFF state.

the database, the researcher can obtain the parts and join them together. This process is

known as assembly and is shown in Figure 2.4. In this diagram, parts B0034 and C0010

from the Registry of Standard Biological Parts are joined together. This process is

accomplished by using a restriction enzyme to cleave the part B0034 free from its plasmid

(i.e., a continuous loop of DNA). Another restriction enzyme is then used to cleave a hole in

the plasmid containing part C0010. Finally, these parts are mixed together where through

DNA recombination they ligate (i.e., bind together) to form a new plasmid. Figure 2.5

shows how the restriction enzyme cleaves the DNA in order to form “sticky ends” that

allow this ligation to take place. At this point, the genetic circuit is integrated into the

host cell and begins functioning using the host cell’s genetic machinery, and the researcher

can begin performing experiments with the circuit.

Sometimes not all of the necessary parts are available in a database of genetic parts. In

this case, the researcher may have to determine the DNA sequence for the desired genetic

circuit. Once the this sequence is determined, the researcher can send the sequence off to

a DNA-sequencing service where the circuit can be synthesized one base pair at a time.

At this point, the completed circuit can be inserted into a cell and experimented upon.
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Figure 2.4: Diagram showing the process of assembling two biological parts together. In
this diagram, part B0034 is cleaved out of its plasmid by using a restriction enzyme to cut
the plasmid at points E and S. Additionally, the plasmid holding part C0010 is cleaved
with a restriction enzyme at points E and X. The remaining parts are then allowed to mix
and ligate to form a new part where part B0034 has been joined to part C0010. (Courtesy
of the Registry of Standard Biological Parts)

The insertion process typically involves a researcher selecting a host cell that has a

simple enough genome that the inserted circuit does not take up too much of the cells

resources causing the cell to die. Also, it is important to select a host cell that does not

contain the same genes or promoters as the designed circuit so that the circuit does not

interfere with other processes in the cell and vice versa. A cell that is often chosen as

the host is Escherichia coli or E. coli which is a mostly harmless, rod-shaped bacterium

commonly found in the lower intestine of warm-blooded organisms.
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Figure 2.5: Diagram depicting the insertion of a segment of DNA into a plasmid. This
insertion is accomplished by: I. Restriction enzymes cleaving the DNA of the plasmid and
of the segment of DNA creating “sticky ends.” II. DNA recombination where the “sticky
ends” bind to each other causing the segment of DNA to be incorporated into the plasmid.



CHAPTER 3

MATHEMATICAL MODELING AND

ANALYSIS

In order to reason about genetic regulatory circuits, researchers need to be able to

model and analyze them. Traditionally, researchers have used mathematical models to

describe systems of interest as these models can be analyzed and simulated using well

known techniques to give a researcher a better idea of how the system behaves. However,

in order to use mathematical models, the system must first be broken down into basic

chemical reactions. Section 3.1 describes chemical reactions, the fundamental processes

that allow for a genetic circuit to change state. Section 3.2 describes how a genetic

circuit can be represented as a collection of chemical reactions. Section 3.3 introduces

a method for analyzing a chemical reaction network using traditional classical chemical

kinetics (CCK) that assume that the system behaves continuously and deterministically.

Section 3.4 presents an alternative method for analyzing a chemical reaction network

utilizing stochastic chemical kinetics (SCK) that assume that the system behaves discretely

and stochastically. Section 3.5 exhibits some model abstractions that can reduce the size

and complexity and improve the analysis efficiency of a genetic circuit.

3.1 Chemical Reaction Networks

The fundamental process of converting a subset of species in a system to another subset

of species is known as a chemical reaction. The species that are consumed by the reaction

are known as the reactants and the species that are produced by the reaction are known as

the products. Additionally, there can be species that are neither produced nor consumed

by a reaction but must be present in order to catalyze the reaction. These species are

known as modifiers. For example, the chemical reaction:

s1 + s3 → s2 + s3 (3.1)

has one reactant, species s1, one product, species s2, and one modifier, species s3.
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The reaction shown in Reaction 3.1 is known as a bimolecular reaction because it

requires two species to collide in order to initiate the reaction. Although it is possible for

a reaction to occur when more than two species collide, it is extremely unlikely. Because

of this fact, bimolecular reactions and unimolecular reactions, reactions that contain only

one reactant, are typically known as elementary reactions and cannot be broken down into

smaller reactions. Sometimes, for simplicity’s sake, researchers approximate a system of

elementary reactions with nonelementary reactions. Although this approximation can lead

to erroneous results, a good approximation can enable faster analysis with the addition of

little to no error.

There are many different types of bimolecular and unimolecular reactions. For example,

the chemical reaction:

s1 + s2 ⇋ c1 (3.2)

is known as a complex-formation reaction. These reactions occur when two molecules

of different species combine together to form a molecule of a third species. The double

arrow symbol in the complex-formation reaction in Reaction 3.2 means that this reaction

is reversible and is used as a shorthand for two reactions:

s1 + s2 → c1 (3.3)

c1 → s1 + s2 (3.4)

In any chemical reaction network, almost all of the reactions can be thought of as being

reversible. Indeed, even the irreversible reactions can occur in the reverse direction. The

reason that they are typically not written as reversible reactions is that the rate at which

the forward reaction occurs is far greater than that of the reverse reaction causing the

reverse direction to be negligible.

Another common bimolecular reaction is a specialized version of a complex-formation

reaction known as a dimerization reaction. An example dimerization reaction is given in

Reaction 3.5:

2s2 ⇋ s4 (3.5)

The 2 in front of species s2 is the stoichiometry and indicates that this reaction takes two

molecules of species s2 as a reactant. When a number is not present, as in Reactions 3.1

and 3.2, then the stoichiometry is assumed to be one.
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The most common type of unimolecular reaction is the degradation reaction. An

example degradation reaction is shown in Reaction 3.6:

s1 → ∅ (3.6)

This reaction takes one molecule of s1 and destroys it by breaking it down. Although this

reaction is written as having no products, its products are components that can be used

to create new molecules due to the conservation of mass; however, they are omitted to

abstract away unnecessary details. This type of reaction is very important as basically all

molecules eventually degrade. Degradation reactions are also unique in that they are one

of the few reactions that is typically not reversible because once the molecule is broken

down, it cannot simply be put back together but must be produced through other means.

3.2 Genetic Circuits as Chemical Reaction Networks

Genetic regulatory circuits as they are presented in Chapter 2 can be analyzed by

converting them into chemical reaction networks. This conversion can be accomplished

by representing important molecules and constructs in the circuit as chemical species and

by representing their interactions as chemical reactions.

The conversion process begins by creating a species for each of the proteins, promoters,

and chemical inducers in the circuit. Additionally, a species is created for RNAP and

for each protein’s mRNA if the steps of transcription and translation are going to be

represented by separate reactions in the model. The next step is to create a degradation

reaction for each of the protein species. For instance, the degradation reactions for protein

species in the genetic toggle switch in Figure 2.3 are shown in Reactions 3.7 to 3.11:

LacI → ∅ (3.7)

TetR → ∅ (3.8)

GPF → ∅ (3.9)

C1 → IPTG (3.10)

C2 → aTc (3.11)

Note that the degradation reaction for C1 produces IPTG and the degradation reaction for

C2 produces aTc. The reaction are written this way because IPTG and aTc are chemical

inducers and should not degrade away, even when they are part of a complex.
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The next step is to create the open complex formation reactions. These are reactions

that represent the binding of RNAP to a promoter to perform transcription and trans-

lation in order to produce the proteins determined using Prod(p). When creating open

complex formation reactions, researchers have the option to either explicitly represent

transcription and translation as two separate steps or to collapse them together into one

step. For example, the open complex formation reactions for the PLtetO−1 promoter can

be represented with explicit steps for transcription and translation as in Reactions 3.12

to 3.15:

PLtetO−1 + RNAP ⇋ S1 (3.12)

S1 → PLtetO−1 + RNAP + mRNALacI (3.13)

mRNALacI → mRNALacI + LacI (3.14)

mRNALacI → ∅ (3.15)

Here, RNAP binds with PLtetO−1 to form the complex S1 which can either fall apart into

RNAP and PLtetO−1 or can be involved in a transcription reaction to produce the mRNA

for LacI, determined by using Prod(PLtetO−1). At this point, the newly formed mRNA

can act as a modifier in a reaction that represents its translation to produce the LacI

protein, or it can degrade away.

If the steps of transcription and translation are collapsed together, then fewer reactions

are necessary when creating open complex formation reactions. In Reactions 3.16 to 3.17,

RNAP still binds with PLtetO−1 to form the complex S1, but instead of producing mRNA,

this complex is a modifier in a reaction that directly produces the LacI protein:

PLtetO−1 + RNAP ⇋ S1 (3.16)

S1 → S1 + LacI (3.17)

For simplicity’s sake, the genetic regulatory circuits presented in this dissertation use

chemical reaction networks that collapse the transcription and translation steps together.

The rest of the open complex formation reactions for the genetic toggle switch are shown

in Reactions 3.18 to 3.19:

Ptrc−2 + RNAP ⇋ S2 (3.18)

S2 → S2 + TetR + GFP (3.19)

Next, dimerization and complex formation reactions are created for the proteins and

chemical inducers that form dimers and complexes. In the genetic toggle switch, none of
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the species form dimers, so no dimerization reactions are created; however, LacI forms

a complex with IPTG, and TetR forms a complex with aTc. These complex formation

reactions are shown in Reactions 3.20 to 3.21:

LacI + IPTG ⇋ C1 (3.20)

TetR + aTc ⇋ C2 (3.21)

The final steps are to create reactions representing the activation and repression of

the promoters by the species that influence them determined using Act(p) and Rep(p)

respectively. Repression reactions are relatively simple to generate as they are a form of

complex formation reactions where the repressor binds to the promoter to form a complex,

thus, preventing RNAP from binding to it to produce proteins. In the genetic toggle

switch, there are two repression reactions shown in Reactions 3.22 to 3.23:

LacI + Ptrc−2 ⇋ S3 (3.22)

TetR + PLtetO−1 ⇋ S4 (3.23)

Activation reactions, on the other hand, are similar to open complex formation reaction

except that they include the activator as one of the reactants in the complex formation.

The genetic toggle switch does not contain any activators, so its chemical reaction network

does not contain any activation reactions. However, the simple one gene circuit in Fig-

ure 3.1 contains a promoter that is activated by a species. Here, Prod(P1) returns B and

Act(P1) returns A yielding the open complex formation and activation reactions shown in

Reactions 3.24 to 3.27:

P1 + RNAP ⇋ S2 (3.24)

S2 → S2 + B (3.25)

P1 + A + RNAP ⇋ S1 (3.26)

S1 → S1 + B (3.27)

It should be noted that although the open complex formation and activation reactions

look similar, the likelihood of S1 yielding B is higher than the likelihood of S2 yielding B.

This increase in likelihood is due to the reactions occurring at different rates as discussed

in Section 3.3, and the activation reaction’s activated rate is higher than the open complex

formation’s basal rate.
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BA

P1 b

Figure 3.1: A simple one gene circuit where species A activates the production of species
B on promoter P1.

3.3 Classical Chemical Kinetics

Once the genetic circuit is converted into a chemical reaction network of n species and

m reactions, it can be analyzed using CCK. CCK are well-known methods which assume

that the network reacts continuously in a well-stirred medium and that there are a large

amount of molecules in the system. In CCK, the rate of each reaction is considered to be

the speed at which it alters the amount of the species that participate in it per unit time.

To compute these rates, CCK converts the network into a set of ODEs using the law of

mass action. By utilizing this law, it is able to leverage many well-established theories

that deal with systems of ODEs.

The law of mass action states that the rate of each chemical reaction is proportional to

the product of the concentrations (i.e., the amount of molecules divided by the volume)

of the reactant species in the reaction. This statement means that the rate of a reaction

can be computed by multiplying the concentration of each of its reactant species by the

reaction’s rate constant, a coefficient that can change the rate of a reaction based on factors

such as temperature. As an example, consider Reaction 3.1. To show that this reaction

should be considered using mass action kinetics, this reaction can be rewritten to include

the reaction’s rate constant, k1:

s1 + s3
k1→ s2 + s3 (3.28)

The reaction rate, V , of this reaction can then be written as:

V = k1|s1||s3| (3.29)

where |si| is the concentration of species si.
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If a reaction is reversible, then it has a rate constant for the forward reaction and a

rate constant for the reverse reaction. For instance, Reaction 3.5 can be annotated with

the forward rate constant k2 and the reverse rate constant k−2:

2s2
k2
⇋

k−2

s4 (3.30)

The reaction rate for Reaction 3.30 is slightly more complicated than an irreversible

reaction. Basically, it is derived by computing the rate of each direction of the reaction.

Then, the rate of the reverse direction is subtracted from the rate of the forward direction

as shown in Equation 3.31:

V = k2|s2|
2 − k−2|s4| (3.31)

In this equation, the concentration of s1 is squared because two molecules of s1 combine

to make a molecule of s2. In general, a reactant species involved in a reaction is raised to

the power of its stoichiometry when computing the reaction rate.

Using the law of mass action, the general equation for computing the reaction rate Vj

of reaction rj is given by Equation 3.32:

Vj = kj
+

n∏

i=1

|si|
vr

ij − kj
−

n∏

i=1

|si|
v

p
ij (3.32)

where kj
+ is the forward rate constant of the jth reaction, kj

− is the reverse rate constant

of the jth reaction, vr
ij represents the number of species si molecules consumed by the

jth reaction, and vp
ij represents the number of species si molecules produced by the jth

reaction.

Figure 3.2 shows the reaction graph of the chemical reaction network of the genetic

toggle switch after adding rate constants from Table 3.1 and applying the law of mass

action to Reactions 3.7 to 3.23.

3.3.1 Deriving an ODE Model

Using mass action kinetics, one can derive a reaction rate for each reaction in a system

and can use these rates to write a system of ODEs that define the behavior of each species.

For example, in a system where Reactions 3.28 and 3.30 are the only reactions, four ODEs

can be constructed that describe the evolution of species s1, s2, s3, and s4. Since species
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Figure 3.2: Reaction graph for the genetic toggle switch. Reaction rate equations are
shown in the boxes representing each reaction. The edges between species and reactions
are labeled r if the species is a reactant in the reaction, p if the species is a product of the
reaction, and m if the species is a modifier in the reaction.

s1 is a reactant and is consumed by Reaction 3.28, the ODE that describes its behavior

is the negation of this reaction rate:

d|s1|

dt
= −k1|s1||s3| (3.33)

On the other hand, species s2 is a product of one reaction and is a reactant in the other

which means that its ODE is the sum of the rate for Reaction 3.28 and the negated rate

for Reaction 3.30:
d|s2|

dt
= k1|s1||s3| − 2(k2|s2|

2 − k−2|s4|) (3.34)
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Table 3.1: Parameter list

Parameter Symbol Value Units

Degradation rate kd 0.0075 1
sec

Complex formation equilibrium Kc 0.05 1
molecule

Stoichiometry of binding nc 2 molecule

Repression binding equilibrium Kr 0.5 1
molecule

Activation binding equilibrium Ka 0.0033 1
molecule

RNAP binding equilibrium Ko 0.033 1
molecule

Activated RNAP binding equilibrium Koa 1 1
molecule

Basal production rate kb 0.0001 1
sec

Open complex production rate kp 0.05 1
sec

Activated production rate ka 0.25 1
sec

Stoichiometry of production np 10 unit − less

The rate for Reaction 3.30 is multiplied by two in this equation because two molecules of

s2 are consumed by this reaction. Species s3 only participates in Reaction 3.28 as both a

reactant and a product, so the ODE describing its evolution over time becomes:

d|s3|

dt
= k1|s1||s3| − k1|s1||s3| = 0 (3.35)

The equation evaluating to zero means that the concentration of s3 does not change as

time advances. Finally, s4 is a product of Reaction 3.30, so its ODE is:

d|s4|

dt
= k2|s2|

2 − k−2|s4| (3.36)

Deriving an ODE model from a chemical reaction network using mass action kinetics

can be generalized in the following way. For each species, the ODE describing the behavior

of the species is equal to the sum of all the reaction rate stoichiometry products of

reactions where the species participates as a product minus the sum of all the reaction rate

stoichiometry products of reactions where the species participates as a reactant. Formally,

this derivation is stated in Equation 3.37:

d|si|

dt
=

m∑

j=1

(vp
ij − vr

ij)Vj (3.37)

Using Equation 3.37, the full ODE model for the genetic toggle switch can be derived

from the reaction graph shown in Figure 3.2. This ODE model is shown in Figure 3.3.

Once the full ODE model has been derived, the model can be analyzed using some

well known techniques [70]. These techniques typically involve linearizing the system
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d|LacI|

dt
= kp|S1| − kc|LacI||IPTG| + k

−c|C1| − kr|LacI||Ptrc−2| + k
−r|S3| − kd|LacI|

d|TetR|

dt
= kp|S2| − kc|TetR||aTc| + k

−c|C2| − kr|TetR||PLtetO−1| + k
−r|S4| − kd|TetR|

d|GFP|

dt
= kp|S2| − kd|GFP|

d|C1|

dt
= kc|LacI||IPTG| − k

−c|C1| − kd|C1|

d|C2|

dt
= kc|TetR||aTc| − k

−c|C2| − kd|C2|

d|IPTG|

dt
= −kc|LacI||IPTG| + k

−c|C1| + kd|C1|

d|aTc|

dt
= −kc|TetR||aTc| + k

−c|C2| + kd|C2|

d|PLtetO−1|

dt
= −ko|PLtetO−1||RNAP| + k

−o|S1| − kr|TetR||PLtetO−1| + k
−r|S4|

d|Ptrc−2|

dt
= −ko|Ptrc−2||RNAP| + k

−o|S2| − kr|LacI||Ptrc−2| + k
−r|S3|

d|S1|

dt
= ko|PLtetO−1||RNAP| − k

−o|S1|

d|S2|

dt
= ko|Ptrc−2||RNAP| − k

−o|S2|

d|S3|

dt
= kr|LacI||Ptrc−2| − k

−r|S3|

d|S4|

dt
= kr|TetR||PLtetO−1| − k

−r|S4|

d|RNAP|

dt
= −ko|PLtetO−1||RNAP| + k

−o|S1| − ko|Ptrc−2||RNAP| + k
−o|S2|

Figure 3.3: The full ODE model of the genetic toggle switch derived from the chemical
reaction network shown in Figure 3.2.

by evaluating the rate of change of each of the species’ concentrations using the initial

concentration of each species. The system is then evolved by selecting a small time step

and computing a new concentration for each species at the end of the time step. This

process is then repeated by computing new rates with the new concentration values and

a new time step. Since it is often the case that the ODE rate equations are dependent on

the concentration of many species, the results of ODE analysis may be erroneous if the

time step is too large. However, if the time step is too small, then the analysis takes an

extremely long time as many unnecessary steps are taken to evolve the system. To address

this problem, there have been improvements that try to adapt the time step selection so
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that it is able to make progress in evolving the system but is never so large that the ODE

rates for each species change too dramatically.

3.3.2 Disadvantages of CCK

As stated previously, CCK assumes that the system behaves continuously and de-

terministically. When the amounts of each species are very large, this assumption is

reasonable as changes in the population size of each species are relatively small and can

be viewed as continuous changes. In addition, small fluctuations of species counts in a

system where the population sizes are large can be safely disregarded as they do not affect

the system significantly. Therefore, the dynamics of the system can also be viewed as a

deterministic process.

In genetic regulatory circuits, the species counts are typically very small and each

reaction can cause large fluctuations in species counts. Because these circuits violate the

assumptions of CCK, the true behavior of the system is not able to be captured when

analyzing it using CCK. Thus, researchers have turned to other methods to aid in the

analysis of genetic regulatory circuits.

3.4 Stochastic Chemical Kinetics

In contrast to CCK, SCK assumes that a chemical reaction network behaves as a

discrete-stochastic process. It achieves this assumption by treating the network as a

well-stirred system with a discrete number of molecules. SCK can then simulate the time

evolution of the system by stochastically firing reactions to change the amounts of each

species in the system.

SCK keeps track of species’ amounts instead of species’ concentrations. Indeed, the

system state in SCK is simply the population of each species in the system denoted

~x = (x1, ..., xN ). Changes in the system state occur through the firing of reactions. When

a reaction rj fires, it applies a state change vector, ~vj = (v1j , ..., vNj), to the system state

where each vij is the amount of change reaction rj causes to species si’s population. The

new system state is then defined by ~x + ~vj .

3.4.1 Propensities

In order to simulate a system using SCK, the next reaction event and the time of next

reaction event must be determined. This selection is governed by a propensity function

aj(~x) for each reaction rj in the system. Each aj(~x) is the probability that, given ~x,
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reaction rj occurs within the next infinitesimal time interval that is so small that at most

one reaction event can occur.

Each propensity function is quantified by multiplying the amount of each reactant to

the reaction by the probability that a randomly chosen combination of molecules in the

system are the reactants. It turns out that these probabilities are proportional to the

rate constants used in CCK. For example, the propensity function for Reaction 3.28 is

defined as a1(~x) = k1s1s3. As can be seen, the propensity is similar to the CCK reaction

rate presented in Equation 3.31. This similarity is due to the fact that SCK actually

approximates CCK when the molecule counts of species are very large.

3.4.2 Chemical Master Equation

When simulating a genetic circuit using SCK, all that matters are the current molecule

counts as they are the only values that can change and affect the propensity functions.

Therefore, each transition of the system only depends on the current state of the system

and does not depend on the history of the system. This fact means that the circuit can

be treated as a temporally homogeneous jump Markov process [34].

The Markov process described by SCK can be defined as the probability, P (~x, t +

dt|~x0, t0), that the system state is ~x at time t + dt given that it was ~x0 as time t0. In

order to compute this probability, all the possible states that are only one step away from

the system being in state ~x are considered. The probability of moving from each of these

states to state ~x (i.e., each reaction propensity) is multiplied by the probability that the

system reached state ~x−~vj at time t and these values are summed together. Additionally,

the probability that the system is already in state ~x and no reactions occur is added to

this probability to give the final Markov process probability. Formally, this probability is

defined as:

P (~x, t + dt|~x0, t0) =P (~x, t|~x0, t0)


1 −

M∑

j=1

aj(~x)dt




+

M∑

j=1

[P (~x − ~vj , t|~x0, t0)aj(~x − ~vj)dt]

(3.38)

Taking the limit as dt goes to 0 gives the chemical master equation (CME):

∂P (~x, t|~x0, t0)

∂t
=

M∑

j=1

[P (~x − ~vj , t − dt|~x0, t0)aj(~x − ~vj) − P (~x, t|~x0, t0)aj(~x)] (3.39)
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3.4.3 Stochastic Simulation Algorithm

The integral to the CME gives a probability that captures the time evolution of the

state probabilities for the genetic circuit. However, computing this integral is typically

infeasible for most genetic regulatory circuits due to the fact that Equation 3.39 is a set

of coupled ordinary differential equations for each system state and most realistic systems

have state spaces that are infinite. Due to this infeasibility, methods to approximate the

CME have been developed including the SSA.

The SSA is an algorithm that generates a time course simulation trajectory of a

chemical or biochemical system [32, 33]. The main claim to fame of the SSA over other

stochastic simulation approaches is that it steps over time steps where no reactions occur.

Algorithm 3.1 presents an implementation of the SSA algorithm known as the direct

method. This algorithm begins by initializing the simulation time to t0 and the current

state vector which holds counts for each molecule to ~x0 (line 1). The algorithm then

enters a loop (lines 2-11) where the state vector is updated and time is advanced until

time reaches the time limit T . During each iteration of this loop, the propensity function

of each reaction is computed and summed (lines 2-4), two random numbers are drawn

(line 5), the time of the next reaction and the next reaction are determined using these

random numbers and the propensity functions (lines 6-7), and the state vector and time

are updated and recorded (lines 8-9).

Since the development of the SSA, there have been many variations and improvements

to the algorithm. Among these are the first-reaction method, the next-reaction method,

the SSA-CR method, tau-leaping, ssSSA, and wSSA. Each method is described briefly

below.

The first-reaction method is the same as the direct method except instead of generating

two random numbers, this method generates a random number ri for each reaction. The

time until each reaction is then calculated as τi = 1
ai(~x) ln

(
1
ri

)
and the reaction Ri with

the smallest corresponding τi is selected and fired. This method is exact just like the direct

method and performs nearly as well except for that fact that if the system has more than

two reactions, then it must draw more random numbers, a process that can sometimes be

expensive [32].

An improvement to the first-reaction method is the next-reaction method. This method

takes advantage of the fact that the propensities of only a few reactions change after

any given reaction fires. Instead of recalculating all of the τi’s and ai(~x)’s, this method

stores these values so that they do not all have to be recalculated every time step. In
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Algorithm 3.1: SSA(Initial state 〈~x0, t0〉; Reactions Ri∈1...m; Time limit T )

Initialize the current simulation time t = t0 and the current state vector ~x = ~x0.1

forall Reactions Ri∈1...m do2

Evaluate the propensity functions ai(~x) at state ~x.3

Evaluate the sum of all the propensity functions:4

a0(~x) =
m∑

i=1

ai(~x)

Draw two unit uniform random numbers, r1, r2.5

Determine the time, τ , until the next reaction:6

τ =
1

a0(~x)
ln

(
1

r1

)

Determine the next reaction, Rµ, where µ is the smallest integer satisfying7

µ∑

i=1

ai(~x) > r2a0(~x)

Determine the new state after firing Rµ: t = t + τ and ~x = ~x + ~vµ where ~vµ is the8

update vector after firing Rµ.
Record (~x, t).9

if t < T then10

Go to step 2.11

addition, the τi’s are changed to incorporate the value of t so that they represent real

simulation times instead of relative times. In order to keep track of which values need

to be updated during a time step, a reaction dependency graph is used to keep track of

which reactions are affected when a reaction fires. Finally, every time a reaction fires,

all of the unaffected τi’s are renormalized and a priority queue is used so that updating

and finding the next reaction to fire is easy and efficient. As long as the priority queue is

indexed and implemented well, this method significantly improves the efficiency of SSA as

the number of species and reactions goes up because it only requires that the propensities

and next-fire times of affected reactions be updated and the next-fire times of all other

reactions be renormalized [30].

Using a technique known as composition and rejection, the SSA can be improved to a

constant time algorithm regardless of the number of reactions. This improvement is known

as the SSA-CR and works by drawing four random numbers instead of two and segregates

the reactions into groups based on how large their propensities are (this segregation is
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known as the composition step). The first random number is still used to select which

time the next reaction should be fired; however, the second random number is used to

select a group to draw a reaction from. The third random number is then used to pick

a reaction from the selected group. If the selected reaction’s propensity is larger than

the final random number times the largest propensity in the group, then the reaction is

fired. Otherwise, the third and fourth random numbers are redrawn and a new reaction

is potentially selected to be fired (this redrawing is known as the rejection step). After

firing the reaction, the groupings are updated based on the newly updated propensities

and the algorithm repeats.

To further improve simulation efficiency, the tau-leaping method selects τ such that

multiple reactions fire in each time increment. This selection is done by the introduction

of m random functions Ki(τ, ~x, t) (one for each reaction) that determine how many

times each reaction Ri fires in the time increment [t, t + τ ]. Since all of these random

functions are dependent on each other making them very difficult to compute, they are

often approximated with Poisson random variables taking into account the leap condition

that ensures that τ is small enough that none of the propensities change by a significant

amount. The value of τ is also limited by the fact that if it is too large then too many

critical reactions may fire causing a species count to become negative. Indeed, the main

challenge of the tau-leaping method is to pick τ such that enough reactions occur in each

time step to speed up simulation while ensuring that the leap condition is not violated

and that too many critical reactions do not fire. To solve this problem, the tau-leaping

method introduces an accuracy control parameter 0 < ǫ << 1 that helps determine τ . If

accuracy is more of a concern, then ǫ should be set to a lower value; however, if runtime

efficiency is desired, then ǫ should be set to a higher value. For reasonable values of ǫ,

the tau-leaping method outperforms exact SSA methods while providing a fairly accurate

approximation of the system’s behavior [36].

Even with tau-leaping, many systems with both fast and slow reactions, also known as

stiff chemical systems, perform poorly. Inspired by the Michaelis-Menten approximation

in deterministic chemical kinetics, the ssSSA is an efficient approach to dealing with such

systems. It proceeds by first partitioning reactions into two groups: reactions with large

propensities (i.e., fast reactions) and reactions with small propensities (i.e., slow reactions).

It then continues by partitioning species into fast species if their counts are changed by

any fast reaction and slow species otherwise. Next, the algorithm creates a virtual fast
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process that represents the fast species counts evolving under only the fast reactions with

none of the slow reactions. Finally, the ssSSA then simulates only the slow reactions,

using specially modified propensity functions taking into account the virtual fast process.

Although slow-scale SSA is an approximation of the exact methods, it has been shown

to decrease simulation time when compared to the exact SSA by two to three orders of

magnitude, with no perceptible loss of simulation accuracy [13].

Sometimes there are interesting events in a system that rarely occur. Even with the

various improvements to the SSA listed above, it can still take an extremely large amount

of simulation runs to observe these rare events. This fact led to the development of the

wSSA, which uses importance sampling techniques to determine the probability of rare

events occurring. Basically, this method works by guiding the simulation to be more

likely to produce a run where the rare event occurs. It then weights the sample paths by

a likelihood factor to produce a statistically correct and unbiased result.

3.5 Reaction-Based Abstractions

Even with all of the improvements to the SSA, analysis of genetic regulatory circuits

using SCK can still be very computationally intensive. One way to alleviate this problem is

to try to reduce the model to a smaller, less complex model that still preserves the behavior

of the original model. This reduction can be done by applying abstractions to the model

before it is analyzed. Reaction-based abstractions attempt to reduce the number of species

and reactions in the model. These abstractions typically improve simulation time as they

attempt to eliminate time scale separation in the model. Namely, they try to remove fast

reactions that slow down the simulation because they fire often preventing the simulation

from making significant progress.

There are many reaction-based abtractions [53]. Among these are a collection of

abstractions that are well suited to work with chemical reaction networks generated from

genetic regulatory circuits. These abstractions include operator site reduction, complex

formation abstraction, sequestering abstraction, and reaction splitization.

In reaction networks representing genetic regulatory circuits, there are often a lot of

fast reversible reactions for the binding of RNAP and either an activator or repressor to

a promoter’s operator site. The goal of operator site reduction is to remove these fast

reactions so that the analysis can focus on interesting reactions in the system instead

of spending computation time on these uninteresting reactions. This abstraction begins

by first determining the species that represent the operator sites of the network (i.e.,



32

the promoters). It then finds how many different binding configurations the operator

site can be in and computes a quasi-steady-state approximation value for each of these

bindings. This approximation is essentially the values of the species counts of the species

that form each binding multiplied by an equilibrium constant for the reaction (the forward

rate constant over the reverse rate constant). The sum of these values and 1 become the

denominator of the new reaction rates for the reduced reactions. For each binding reaction

that leads to production of another species, the reduced reaction rate is the product of

the rate of the original production reaction, the total species count of the operator, and

the quasi-steady-state approximation value for the binding over the summation described

above. The function rate(p), shown in Equation 3.40, can be derived which returns the

rate of production initiated from promoter p.

rate(p) =
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X
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X
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Koa|RNAP |(Ka|sa|)nc

otherwise

(3.40)

The rate(p) function is made up of constants which can be found in Table 3.1 and

variables for the repressing species, sr, and activating species, sa, for this promoter. This

function is broken down into two cases. The first case is for a promoter that does not

have any species which are activating it. In this case, it is assumed that the promoter is

constitutive which simply means that it can initiate transcription at a significant rate

without the aid of another activating species. Assuming that there are no repressor

molecules present, this rate is approximately npkp|p| where np is the number of proteins

produced per mRNA produced, kp is the transcription rate for a constitutive promoter,

and |p| is the number of copies of the promoter and gene. However, this rate is reduced as

the number of repressor molecules, sr, increases. The second case is for a promoter that

must be activated for significant transcription. Assuming that there are no activator or

repressor molecules present, the rate of production of this promoter is npkb|p| where kb is

a low basal rate of production which is typically much smaller than kp. In this case, as

the number of activator molecules, sa, increases so does the rate of production from this

promoter. Like the first case, this production can also potentially be inhibited, if there

exist species which can repress this promoter [64].
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If there are complex formation reactions between species and chemical inducers such

as that between LacI and IPTG, complex formation and sequestering abstractions can

be applied to the model. These abstractions are related as they both deal with complex

formation reactions. The complex formation abstraction uses a steady state approximation

to remove complexes from the original model. This abstraction replaces the value of a

complex, ci, in a rate function with the expression Kcsisj , where si and sj are species

that bind to form ci and Kc is the complex formation equilibrium constant. For instance,

applying this abstraction to complex C1 in the genetic toggle switch would replace each

instance of it with Kc|LacI||IPTG|.

The sequestering abstraction, on the other hand, uses the quasi-steady-state approx-

imation in addition to the law of mass conservation and replaces the value of a species,

si, in a rate function with the expression
sitotal

1+Kcsj
, where sitotal

is the variable for the total

amount of the species (free and in complex) and sj is the variable for the other species that

binds with si to form the complex. This rate shows that as the amount of sj increases, the

effective amount of si decreases. In the genetic toggle switch, everywhere TetR appears

in a rate equation, it is replaced by |TetR|
1+Kc|aTc| when using this abstraction.

Reaction splitization is useful in cases where the analysis requires that all reactions

only have at most one reactant or product. This type of abstraction is especially beneficial

when performing analysis where only one of the species values can change at a time. This

abstraction works by creating a copy of a reaction for each reactant or product that is

involved in the reaction. For each of these new reactions, it assigns one of the reactants or

products to the reaction and all other reactants become modifiers. An example of how this

abstraction works with a reaction that has a single reactant and a single product is shown

in Figure 3.4. Additionally, this abstraction is illustrated in Figure 3.5 for a reaction with

more than one reactant and in Figure 3.6 for a reaction with more than one product.

Applying the operator site reduction and sequestering abstractions to the genetic toggle

switch reaction network shown in Figure 3.2, the model is reduced from 14 species and 13

reactions to 5 species and 5 reactions. This resulting reaction graph is shown in Figure 3.7.
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Figure 3.4: Single reactant single product reaction splitization: (a) original reaction and
(b) split-up reactions.
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Figure 3.5: Multiple reactants reaction splitization: (a) original reaction and (b) split-up
reactions.
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Figure 3.6: Multiple products reaction splitization: (a) original reaction and (b) split-up
reactions.
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Figure 3.7: Reaction graph for the genetic toggle switch after applying reaction-based
abstractions to the chemical reaction network. These abstractions reduce the model from
a model of 14 species and 13 reactions to a model of 5 species and 5 reactions.



CHAPTER 4

INCREMENTAL STOCHASTIC

SIMULATION ALGORITHM

When analyzing a genetic regulatory circuit, researchers are often interested in the

behavior of the circuit. In order to discern this behavior, researchers perform various

types of analyses including ODE and SSA simulations. These types of analysis can tell a

researcher a lot about a system; however, they often are unsuccessful in producing results

that show the “typical” behavior of the circuit. This inability to easily discern the circuit’s

typical behavior has led to the development of the iSSA, a variant of SSA which attempts to

produce a simulation trace describing the typical behavior of a chemical reaction network

by performing many simulation runs in small time increments. The iSSA then uses the

resulting states of the runs in the current time increment to constrain the selection of

starting states in the next time increment. Depending on the model being analyzed,

different variants of the iSSA can be utilized to analyze it by altering the parameters or

functions used by the algorithm.

Section 4.1 motivates the iSSA and gives the intuition behind the iSSA algorithm.

Section 4.2 details how the iSSA algorithm simulates a chemical reaction network. Sec-

tion 4.3 presents a variant of the iSSA known as the marginal probability density evolution

(MPDE) method. Section 4.4 introduces another variant of the iSSA known as the mean

path method. Section 4.6 presents an adaptive approach to selecting the time increment

of the iSSA algorithm. Section 4.5 describes a method similar to the mean path method

known as the median path method. Finally, Section 4.7 exhibits an approach to iSSA that

allows it to produce multiple typical paths.

4.1 Algorithm Intuition

Typically, whenever a researcher wants to determine the behavior of a genetic regu-

latory circuit, he or she analyzes it using either ODE or SSA simulation. These types

of analysis produce time series data that the researcher can then examine to observe the
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behavior of the circuit. However, these simulation techniques often produce results that

hide the typical behavior of the system. This cloaking of the typical behavior is due to the

fact that the deterministic nature of ODE simulation prevents it from capturing stochastic

events which can be essential to the function of the genetic regulatory circuit. Although

SSA simulation is capable of capturing stochastic events, in order to determine statistics

on the typical behavior of a circuit, researchers perform many simulation runs and take

the average of these runs as the typical behavior. The problem with this approach is that

there is often a lot of noise in genetic regulatory circuits and stochastic events often occur

at different time points from simulation to simulation. This averaging causes a smoothing

effect where the typical behavior is washed out by noise and time-shifted stochastic events.

Simulation results for the toggle switch are expected to select either the ON or the OFF

state when the circuit is initially set to a state where all the signals are low. Figure 4.1

shows that individual SSA simulation runs capture this expected behavior. However,

Figure 4.2 shows an ODE simulation of the toggle switch where the circuit neither switches

ON or OFF but instead stabilizes at an intermediate state. Similarly, the plot of the

average of 100 SSA simulations show the toggle switch going to a false intermediate state.

This plot also shows that the average of 100 runs suffers from the smoothing effect and

fails to capture the noisy fluctuations observed in the original circuit.

The goal of the iSSA, on the other hand, is to produce time series data that represents

typical behavior of a chemical reaction network. The main idea behind the iSSA is to

perform stochastic simulation runs in small time increments [84, 54]. At the end of each

time increment, statistics are computed over all of the simulation runs. These statistics

are then used in the next time increment to constrain and select a new starting state for

each run. An example of how this process works in shown in Figure 4.3. In this figure,

there are five simulation runs that are run up to a certain time point (represented by the

vertical bars). At this point, the simulations stop and statistics are computed over the

states of the system. A new starting state is then selected for each simulation, and this

process continues until the time limit for the entire simulation is reached.

4.2 iSSA Algorithm Overview

The iSSA algorithm, presented in Algorithm 4.1, is essentially a wrapper around

Gillespie’s SSA that continually starts and stops several simulation runs at the beginning

and end of each time increment. The iSSA takes as parameters a maximum number of

simulation runs (maxRuns), a simulation time limit (timeLimit), an initial state-vector and
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(a)

(b)

Figure 4.1: Individual SSA results for the genetic toggle switch initialized to a state
where aTc, IPTG, LacI, TetR, and GFP are low. (a) Plot showing an individual SSA run
where the circuit switches to the ON state. (b) Plot showing an individual SSA run where
the circuit switches to the OFF state.
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Figure 4.2: ODE results and the mean x (t) of 100 SSA runs for the genetic toggle switch
initialized to a state where aTc, IPTG, LacI, TetR, and GFP are low.

Figure 4.3: Illustration showing the incremental nature of the iSSA. The end of each
time increment and beginning of the subsequent increment is indicated by the vertical
bars. As this figure shows, simulations run continuously through an increment but are
stopped at the end of the increment and may be started up again from a different state
in the next increment.
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Algorithm 4.1: iSSA(Maximum number of runs maxRuns; Time limit timeLimit;
Initial state 〈~x0, t0〉; Reactions Rl∈1...m)

Initialize: k = 1 and X(0) = 〈~x0, t0〉.1

Set i = 1.2

Set 〈~x, t〉 = select(X(k−1)) and start = t.3

Set limit = findLimit(start, ~x, t).4

Execute a Gillespie SSA step:5

forall Reactions Rl∈1...m do6

Evaluate the propensity functions al(~x) at state ~x.7

Evaluate the sum of all the propensity functions:8

a0(~x) =
m∑

l=1

al(~x)

Draw two unit uniform random numbers, r1, r2.9

Determine the time, τ , until the next reaction:10

τ =
1

a0(~x)
ln

(
1

r1

)

Determine the next reaction, Rµ, where µ is the smallest integer satisfying11

µ∑

l=1

al(~x) > r2a0(~x)

Determine the new state: t = t + τ and ~x = ~x + ~vµ.12

if t < limit then13

Go to step 4.14

record(X(k), ~x, t, i).15

if i < maxRuns then16

Set i = i + 1.17

Go to step 3.18

if t < timeLimit then19

Set k = k + 1.20

Go to step 2.21
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system time 〈~x0, t0〉, and a collection of reactions Rl∈1...m. The iSSA begins by initializing

the record table where ending states are stored (X) to the initial state and system time

(line 1). At the start of each kth increment, the run number, i, is reset to 1 (line 2).

Next, a starting state is selected using the select function along with the starting time

for each run in the increment (start) (line 3). In addition to computing the starting

state for the increment, the ending time for the increment, limit, is computed using

the findLimit function (line 4). At this point, the iSSA executes a step of Gillespie’s

SSA where it selects a random time and reaction event and computes a new state (lines

5-12). The newly computed simulation time is compared against limit to determine if

the algorithm needs to compute another step of the SSA (line 13). If this limit has not

been reached, then the algorithm recomputes limit and another SSA step is performed

(line 14). Otherwise, the algorithm records the current time and state for the current run

by calling the record function (line 15). If the maximum number of runs has not been

reached, a new simulation run is started from the original state chosen by the select

function (lines 16-18). Once all the runs have been completed for the time increment,

the algorithm determines if it has reached the end of the simulation time or if it needs to

compute another time increment (lines 19-21). Finally, the iSSA returns the sequence of

states chosen by the select function that represents a “typical” simulation trace of the

model.

The iSSA requires definitions for three functions in order for it to operate. These

functions are select, findLimit, and record. The select function selects a starting

state for a simulation run from statistics computed on the ending states in the record table

(line 3). The findLimit function computes the ending time for the current increment given

the starting time, the current state, and the current time (line 4). The record function

records simulation data in the record table (line 15). These three functions can be defined

in a number of alternative ways to produce specialized forms of the iSSA. Each specialized

iSSA method delivers different statistical information. For example, the iSSA reduces to

the SSA when the findLimit function returns timeLimit, the select function sets ~x to

~x0, and the record function tracks raw simulation data. This reduction is apparent in

Figure 4.4 where the iSSA is tuned to output SSA runs.



42

Figure 4.4: Illustration showing the iSSA reducing to the SSA when there is a single time
increment equal to the time limit of the simulation and raw simulation data is tracked.

4.3 iSSA Using Marginal Probability Density Evolution

The MPDE method tracks the statistical evolution of each species in the reaction sys-

tem. It is derived from the Chemical Langevin Equation (CLE), a further approximation

to the tau-leaping method [31, 35]. The basic idea of how this method is derived is to

apply the CLE method over a short time-increment. At the end of the increment, the

CLE produces a collection of vectors of Gaussian-distributed random values. Summing

the Gaussians together yeilds a joint Gaussian distribution that can be fully characterized

by its mean and variance. This derivation means that the MPDE method generates a

probability distribution whereas the traditional SSA generates a scalar value for each

species at each time increment. It then uses this distribution to select starting states

at the beginning of each time increment and uses the ending states to compute a new

distribution. A plot showing how this variant of iSSA works is shown in Figure 4.5. This

figure shows MPDE with the number of runs set to five. The MPDE method produces

different starting points for each run in each time increment because each starting point

is drawn from a distribution of the ending points from the previous increment.

The MPDE method is defined by the findLimit, record, and select functions as

follows. The findLimit function simply returns start+ increment, the sum of the start
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Figure 4.5: Illustration showing how the MPDE algorithm performs simulations. At the
start of each time increment, the algorithm draws a starting state from the distribution
computed from the ending states of the previous increment. The squares indicate states
that are rejected due to violating correlation constraints and the circles indicate valid
states.

time and a constant predetermined time interval value that is specified as a parameter at

the beginning of the simulation.

Within interval k, at the completion of simulation run i, the record function stores

the state ~x and the system’s time t at row i in the record table X(k). Once maxRuns is

reached, the average and standard deviation of the columns of X(k) are computed and

used to approximate a Gaussian distribution. This distribution is used to estimate the

marginal probability density function (PDF) for each species in the system.

The select function uses the previously-estimated PDF to randomly generate a new

starting state ~x. Let xj be the jth member of ~x. Then xj is generated by randomly drawing

a value from the distribution fj (xj ; k − 1). By generating the xj ’s independently, MPDE

implicitly assumes that all species are pair-wise conditionally independent, given the states

of all other species in the system. However, most genetic circuits contain some pairs of

highly-correlated or dependent species. In these cases, MPDE can be used if known

correlations are stated explicitly as constraints in the reaction model. For example, a

promoter may have three species associated with it: one where it is empty, one where it is

bound to RNAP, and one where it is bound to a repressor molecule. Assuming that the
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number of promoters is constant in the system, the sum of these species should always be

exactly equal to the initial number of promoters. Because of this condition, the select

function must be implemented so that it rejects any ~x that violates this constraint. This

rejection is illustrated in Figure 4.5 where the squares indicate states that are generated

from the distribution but are rejected because they violate these constraints. Finally, since

findLimit always returns a constant value for the time increment, the select function

simply returns the ending time of the previous time increment.

Figure 4.6 shows simulation results of the genetic toggle switch using the MPDE

method with 100 stochastic runs. These results show that the MPDE simulation selects

the OFF state for the circuit, and correctly reveal one of the circuit’s typical behaviors as

opposed to the ODE and average SSA results presented in Figure 4.2.

4.4 iSSA Using Mean Path

While the MPDE method performs well in a variety of examples, it relies on a statistical

approximation that limits the conditions under which it can be trusted. When there are

highly-correlated or dependent species in the genetic circuit, correlation constraints must

be specified or the MPDE may return erroneous results. However, when they are specified,

Figure 4.6: MPDE simulation results for the genetic toggle switch. These results use a
time increment of 10 seconds with 100 runs for each time increment.
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the MPDE often spends a large amount of time generating and rejecting starting states

that violate these constraints.

Another disadvantage of MPDE is that it is unable to be used in tandem with reaction-

based abstractions. This disadvantage due to the fact that the amount of dependent

species is increased when the model is reduced by these abstractions. Since these depen-

dencies are introduced by the abstractions, they are not explicitly defined as part of the

model, and MPDE likely produces erroneous results. For example, Figure 4.7 shows a

simulation of the genetic toggle switch using the MPDE method with abstraction. In this

plot, the MPDE method erroneously predicts that the circuit starts in the OFF state and

begins moving towards the ON state. MPDE, therefore, tends to be less attractive for use

with abstracted simulation models.

In contrast to MPDE, the mean path method does not rely on a statistical approxi-

mation and is able to be used in conjunction with reaction-based abstractions. The result

of the mean path method, however, still uses a statistical evolution approach to try and

capture the typical behavior of the system. Figure 4.8 presents a plot indicating how a

mean path simulation is carried out. At the end of each time increment in mean path, an

Figure 4.7: Abstracted MPDE simulation results for the genetic toggle switch. These
results use a time increment of 10 seconds with 100 runs for each time increment. As seen
in this plot, using abstraction with MPDE causes the simulation to produce erroneous
results.
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Figure 4.8: Illustration showing how the mean path algorithm performs simulations. At
the end of each increment, the algorithm computes the average state over all the end states
(indicated by a square). The state that is closest to this average state is then selected
(indicated by the circle), and each simulation run uses this state as its starting state in
the next increment.

average state is computed over all the ending states. Using a Euclidean distance measure,

the state that is closest to this average state is selected and used as the starting state

for each simulation run in the subsequent increment. When the simulation finally reaches

its time limit, the method outputs a time course trace of the selected states. Since this

method outputs a trace of states that are actually found during simulation, the mean

path is a “real path method” which means that it generates a simulation trace that could

feasibly be generated by simulating the model using the SSA.

The mean path method is defined by the findLimit, record, and select functions,

as follows. As with the MPDE method, the findLimit function returns the sum of the

start time and the constant that is defined for the time increment at the beginning of

the simulation. The record function stores the SSA states and times in the record table,

X(k). After completing all runs for a time increment, the average state, ~x
(k)

, is computed

by averaging down each column of X(k). For each row ~x
(k)
i in X(k), the square Euclidean

distance is computed: d
(k)
i =

∣∣∣~x(k)
i − ~x

(k)
∣∣∣
2
. During interval k, the select function for the

mean path method returns the ~x
(k−1)
i for which d

(k−1)
i is the smallest. It is this selection
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scheme that causes the mean path method to return a simulation trace that could be

found by the SSA.

Because mean path selects an actual state from the state table as the starting state

in each increment, there is no need for correlation constraints to be added to the model.

The mean state is computed by averaging over all simulation runs. A single state is then

selected from these statistics which in turn is used to constrain the initial condition of

each run in the next time increment. By performing simulation runs in this manner, this

algorithm is able to compute meaningful statistics on a genetic circuit while ensuring that

the circuit’s functional behavior is preserved.

Additionally, since there is no need to throw out invalid states in the selection process,

the mean path method is able to perform simulations more efficiently than the MPDE.

To illustrate this efficiency, let us compare simulations of the genetic toggle switch using

the MPDE method with simulations using the mean path method shown in Figure 4.9.

Both MPDE and mean path are able to capture the circuit switching to the OFF state;

however, the MPDE method produces these results in 1 minute and 12 seconds while the

mean path method takes under 2 seconds.

4.5 iSSA Using Median Path

There are some cases where during a time increment, one or more simulation traces

may diverge so much that the ending states become outliers in the average state calculation

of mean path. In these cases, the mean path may end up selecting a state that does not

represent the “typical” behavior of the system due to skewing of the average state. This

skewing can cause the mean path to output a simulation trace that does not represent

the functional behavior of a genetic circuit. The median path method, another “real path

method,” avoids this problem by computing the median state instead of the mean state.

Like the mean path, it then finds the state with the smallest Euclidean distance from this

state and uses this state as the starting state in the next time increment. Figure 4.10

presents a plot indicating how a median path simulation is carried out.

The median path method is functionally the same as the mean path method except for

one difference. Instead of the select function computing the average state, this function

computes the median state, ~̃x
(k)

. This computation involves selecting the median value

for each species for each run in the X(k) record table. For each run ~x
(k)
i in X(k), the square
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Figure 4.9: MPDE and mean path simulation results for the genetic toggle switch.
The MPDE and mean path methods both use a time increment of 10 seconds and are
obtained with 10 simulation runs. It, however, took the MPDE method 1 minute and 12
seconds to obtain results whereas the mean path method was able to utilize reaction-based
abstractions and obtained results in under 2 seconds.

Figure 4.10: Illustration showing how the median path algorithm performs simulations.
At the end of each increment, the algorithm computes the median state over all the end
states. The state that is closest to this median state is then selected, and each simulation
run uses this state as its starting state in the next increment.
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Euclidean distance is computed: d
(k)
i =

∣∣∣∣~x
(k)
i − ~̃x

(k)
∣∣∣∣
2

, and the select function returns

the state ~x
(k−1)
i for which d

(k−1)
i is the smallest.

An example of comparing simulations of the genetic toggle switch produced by the

median path method and the mean path method is shown in Figure 4.11. In this figure,

the toggle switch starts in the OFF state. The circuit is supposed to switch to the

ON state at time point 5,000 and back to the OFF state at time point 15,000 due to

changes in the inputs. The mean path method fails to capture these state changes due

to outlier runs where the circuit does not respond to the change in inputs. The median

path method, however, is robust to these outliers and captures the correct behavior of the

circuit. Because the median path method is able to capture the “typical” behavior of a

circuit even when there are outlier runs skewing the data, it has proven to be the most

robust of the iSSA methods.

4.6 Adaptive iSSA

One downside of using the mean and median path methods is that obtaining reasonable

results proves to be highly dependent on the choice of time increment. This parameter

must be chosen so that an appropriate number of reaction events occurs within each

increment. The proper choice of increment depends on the average rate of reactions,

which may vary considerably during simulation. Therefore, this method can give very

different results based on the choice of this parameter. If this value is too small, then not

enough progress is made during each increment and the final simulation trace is fairly flat.

On the other hand, if this value is too large, then the final simulation trace exhibits the

same washed out behavior as averaging several SSA runs together.

To alleviate the time increment selection problem, the adaptive iSSA dynamically

adjusts the time increment to guarantee that a sufficient number of reaction events are seen

per time increment. This algorithm facilitates automatic parameter choice and produces

more stable results than nonadaptive variants of iSSA. Figure 4.12 shows an example of

how the adaptive method is able to dynamically change the time increment. In this figure,

simulation traces do not necessarily end at the same time which makes time a factor in

computing the representative state in the selection process for the next time increment.

This method can be applied to any of the previously presented iSSA methods as it mainly

involves modifying the time increment selection for each simulation run.
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Figure 4.11: Mean path and median path simulation results for the genetic toggle switch.
This figure shows a comparison of simulating the genetic toggle switch with both the mean
path method and the median path method for 100 simulation runs. In this simulation,
the toggle switch starts in the OFF state. At time point 5,000 IPTG is applied which
should switch it to the ON state. IPTG is removed at time point 10,000, but the circuit
should maintain state. The circuit’s other input, aTc, is applied at time point 15,000,
which should switch the circuit back to the OFF state where it should remain even after
the signal is removed at time point 20,000. Due to outlier runs, these results show that
the mean path method fails to capture these state changes and outputs a trace that stays
at 0 for the entire simulation. The median path method, on the other hand, does not
suffer from this problem and is capable of capturing these state changes.

The adaptive iSSA primarily involves changing the definition of the findLimit func-

tion. There are many ways of defining this function that yield slightly different results.

One such approach is to modify the findLimit function to count the number of times that

it is called. This counting effectively causes it to keep track of how many times a reaction

event is fired in the SSA portion of the algorithm. While this number is below a desired

number of events, the function simply returns the entire simulation time limit. However,

once the desired number is reached, this function returns the current time which causes

the algorithm to move on to the next simulation run. This approach can yield some fairly

good results, but the optimal number of events can vary greatly from model to model.

Another approach is to modify the findLimit function to return the sum of the start

time and the number of desired events divided by the sum of all the propensity values
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Figure 4.12: Illustration showing how the iSSA adaptive algorithm performs simulations.
Each time increment can vary in duration based on the number of desired reaction
events during each increment. At the end of each increment, the algorithm computes
a representative state and uses that as the start state in the next simulation. In this
figure, the algorithm is using an adaptive version of the median path method. Time is
now a variable in the median state computation, and the squares represent the computed
median state that is used in the Euclidean distance calculation to determine the starting
state in the next increment.

(start + #events
a0(~x) ). This method attempts to capture approximately #events reaction

events, but many models have very large time scale separations between the fastest and

slowest reactions which can lead to this method being dominated by the fast reactions as

they have the largest propensity values.

A third way of defining findLimit that deals with the timescale separation problem is

to divide the number of desired events by the propensity of the slowest reaction (start+

#events
amin(~x)). This variant tries to allow each simulation to record #events of the slowest

reaction event. However, it can run into problems when the slowest reaction’s propensity

changes a lot during the time increment causing the method to either capture too many

or too few events of the slowest reaction.

Finally, the most robust adaptive approach that we have developed is to make the

findLimit function doubly adaptive. Algorithm 4.2 presents this function that continu-

ally updates the remaining time in the time increment based on changes in the slowest

reaction’s propensity and how much progress has been made in the increment so far.
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Algorithm 4.2: findLimit(Start time start; Current state ~x; Current time t)

Set progress = (t − start) × prev amin.1

Set remaining = #events− progress.2

Store prev amin = amin(~x).3

return start + remaining

amin(~x) .4

In this algorithm, the amount of progress made towards the current limit is computed

by subtracting the current time, t, from the starting time, start, and by multiplying

this value by the smallest propensity from the previous time increment, prev amin (line

1). Then, the remaining amount of desired events is computed by finding the difference

between the desired number of events, #events, and the previously computed progress,

progress (line 2). Next, the current smallest propensity value is stored into the prev amin

variable for future computations (line 3), and the new time limit is returned by dividing

the remaining progress, remaining, by the current smallest propensity value and adding

this difference to the starting time (line 4). It should be noted in this algorithm that

when t equals start, progress equals zero and the algorithm returns a limit that tries

to capture the desired number of the slowest event. By continually updating the time

increment in this manner, this method is able to adjust to drastic changes in reaction

propensities and capture approximately #events of the slowest reaction event.

An example of comparing a nonadaptive and an adaptive version of the median path

method on the genetic toggle switch is presented in Figures 4.13 and 4.14. In these

examples, the toggle switch again starts in the OFF state and is supposed to switch

to the ON state at time point 5,000 and back to the OFF state at time point 15,000.

Figure 4.13(a) and (b) show the result of simulating this circuit using the nonadaptive

median path. With different time increment choices, the circuit switches at different

times and actually erroneously switches too early when the time increment is 25 seconds.

However, when an adaptive version of the median path method is used as in Figure 4.14,

the time increments change to try and capture 25 of the slowest reaction events in each

increment which leads to accurate results.

The adaptive iSSA method is very robust to switching between simulating with and

without the use of reaction-based abstractions. This robustness is apparent in Fig-

ure 4.14(a) and (b) where regardless of whether or not reaction-based abstractions are

applied to the toggle switch, the results are still accurate. It should also be noted that

the number of the slowest reaction events per time increment in each of these simulations
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(a)

(b)

Figure 4.13: Nonadaptive median path simulation results for the genetic toggle switch.
Each plot was produced with 100 simulation runs. (a) Results produced from the median
path method with a time increment of 10. (b) Results produced from the median path
method with a time increment of 25. As seen in these plots, the median path method
produces different and possibly erroneous results for a different choice of time increment.
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(a)

(b)

Figure 4.14: Adaptive median path simulation results for the genetic toggle switch
produced with the desired number of events during each time increment equal to 25. This
method adapts the time increment in order to try and capture 25 of the slowest reaction
events in each increment. (a) Results obtained without using reaction-based abstractions.
(b) Results obtained using reaction-based abstractions.
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is 25 showing that the adaptive iSSA does not require parameter changes when switching

between between using and not using abstractions. This method is also robust when it

is used to simulate different models. Indeed, Chapter 6 presents case study results for a

variety of models where the adaptive median path iSSA is used to obtain accurate results.

Each of the results in Chapter 6 are obtained using 25 slow reaction events per time

increment just like the toggle switch results in Figure 4.14; however, this parameter choice

does not mean that this method only works with 25 slow reaction events. Values between

10 and 100 usually produce good results, but after testing the adaptive iSSA with many

different slow reaction event choices, it has been determined that values closer to 25 (e.g.,

20 to 30) typically yield the best results.

4.7 iSSA Using Multiple Paths

The previously presented methods are only capable of reporting one “typical” behavior

of a genetic regulatory circuit that is most likely to occur. Many circuits, however, exhibit

more than one typical behavior. Sometimes observing these behaviors depends on the

inputs to the circuit and sometimes observing these behaviors may be due to noise in the

circuit.

The iSSA algorithm can be adapted to select and record multiple typical paths of a

system. This adaptation is done by modifying the select function to use the k-means

clustering algorithm [60]. Instead of calculating one mean or median state and selecting

the run that has the smallest Euclidean distance to this state, the select function groups

the ending states into an arbitrary number of clusters and calculates a mean for each

cluster. The clusters are then iteratively updated by calculating the Euclidean distance

between each ending state and each mean and by reassigning each ending state to its

“closest” mean. At this point, new means are calculated for each cluster and the process

continues until the reassignment does not change any of the clusters. When the clusters

stabilize, the select function proportionally returns an ending state that has the smallest

Euclidean distance from one of the means or medians of each cluster based on how many

ending states are in each cluster. This clustering means that starting points for the next

increment may be different for some of the runs if the ending points for the previous

increment are placed in multiple clusters. Finally, the method returns multiple paths by

stitching the starting points of each increment with the selected ending point that had

the highest proportion of runs that ended in its cluster. Figure 4.15 illustrates how the
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Figure 4.15: Illustration showing how the iSSA multiple paths algorithm performs
simulations. At the end of each time increment, the ending states are clustered (clusters
are shown by grey circles) and a state from each cluster is selected as a starting state for the
next time increment. The algorithm then starts a number of runs from each representative
state equal to the number of runs that ended in that representative state’s cluster. The
algorithm is using the adaptive median path method with the multiple paths.

multiple paths method is able to utilize the k-means clustering algorithm to select two

representative states in each time increment. The grey circles represent the clusters and

the thick black lines represent the selected paths.

An example of using the iSSA multiple paths method to simulate the genetic toggle

switch is shown in Figure 4.16. In this figure, the toggle switch starts in a state where both

inputs are low and both LacI and TetR are low. The circuit has two “typical” behaviors

in this case. It can either switch to the ON state or the OFF state. The iSSA multiple

paths method captures both of these cases showing that it is capable of tracking multiple

paths.

One additional feature of the multiple paths extension is that by using the k-means

clustering algorithm, the algorithm can determine how many runs end up in each cluster

at the end of each time increment. These statistics allow the adaptive iSSA to estimate the

probability of a state being in each cluster. Once the simulation is complete, the algorithm

can then use these probabilities to report how likely it is for the system to choose a given

path over any other path.
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(a)

(b)

Figure 4.16: iSSA multiple paths simulation results for the genetic toggle switch. (a)
Plot showing two paths for the LacI species. (b) Plot showing two paths for the TetR
species. In this simulation, the toggle switch starts out in a state with both inputs low
as well as LacI and TetR being low. This initial condition leads to the circuit selecting
to switch to the ON or the OFF state. As seen in the plot, the multiple paths method is
able to capture both of these cases.



CHAPTER 5

STOCHASTIC MODEL CHECKING

When designing and analyzing genetic circuits, researchers are often interested in the

probability that the system reaches a given state or satisfies a specific condition within a

certain amount of time. Usually, this process involves simulating the system to produce

some time series data and analyzing this data to discern the state probabilities. However,

as the complexity of models of genetic circuits grows, the amount of simulation data needed

to determine these probabilities within a certain confidence interval becomes prohibitively

expensive to compute. To address this problem, researchers can use stochastic model

checking techniques employing Markov chain analysis methods to find the state space of

the system directly and compute the probability of being in each state at a given time.

However, due to genetic circuits having infinite state spaces, this goal is accomplished by

logically abstracting a genetic regulatory circuit into a finite-state continuous-time Markov

chain (CTMC). This CTMC can then be analyzed using Markov chain analysis to deter-

mine the likelihood that the circuit satisfies a given CSL property. This methodology is

used to determine the likelihood of certain behaviors in a genetic regulatory circuit. When

compared to stochastic simulation-based analysis of the same circuit, the results agree with

the reported probabilities but obtain a substantial speedup over these approaches.

Section 5.1 presents a methodology for logically abstracting a genetic regulatory circuit

into a CTMC. Section 5.2 describes different probabilistic temporal logics that can be

used to specify interesting properties about a genetic regulatory circuit. Additionally,

this section presents both transient and steady state stochastic model checking analysis

techniques that utilize Markov chain analysis to determine the likelihood that the circuit

satisfies a particular property.

5.1 Logical Abstraction

Even after applying reaction-based abstractions to chemical reaction networks, the

state space of the system can be extremely large. This problem has led to the application



59

of logical abstractions to these networks [80]. One such abstraction is through the use of

qualitative models [78]. These models, however, typically must be produced by hand and

do not lend themselves to quantitative analysis. To address the problems with qualitative

models, researchers have used boolean networks to define the system [49, 50, 51, 79].

In these networks, each species is either expressed (on) or not expressed (off). Updates

to these networks are typically deterministic and occur synchronously meaning that all

variables update at the same time. Although this abstraction can be very efficient,

especially for large systems, it often fails to capture the stochastic nature of genetic

regulatory circuits.

In order to directly analyze a genetic regulatory circuit, it must first be converted into

a CTMC. Directly translating the circuit into a CTMC, however, yields a Markov chain

with an infinite state space since each species count can take on any value from zero to

infinity. Since analytic techniques cannot deal with an infinite state space, the conversion

process must logically abstract the circuit into a finite-state CTMC. The simplest way

to convert to a finite state space is to select a large upper-bound for each species. One

problem with this method is that, typically, a very large value is selected for each species

as the upper-bound leading to an incalculable state space. Therefore, in order to avoid the

state explosion problem, methods to reduce the state space so that it is small enough to

be analyzed in a reasonable amount of time but is also able to give a good approximation

of the original circuit must be developed.

One method of reducing the state space of the genetic circuit is to add a notion of

logical levels for each species [56, 53]. These levels allow for the specification of more than

just the ON and the OFF state of a species while still encoding the infinite state space into

a finite state space. However, the reduced state space means that the state transition rates

must be approximated in the resulting CTMC before analyzing the system with efficient

stochastic analyses such as stochastic model checking [58, 85].

5.1.1 Threshold Selection

The first problem that must be considered when logically abstracting a genetic regula-

tory circuit is how to partition the state space so that it yields a good approximation

of the entire state space. To solve this problem, threshold selection can be used to

determine which values for each species give the best approximation. However, methods

for performing threshold selection usually have to trade-off between quicker analysis times

but not as accurate approximations and slower analysis times but good approximations.
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One method of accomplishing threshold selection is to perform a few simulations of

the circuit and then to analyze the resulting traces to figure out the range of values for

each species. Then, a user can determine a number of thresholds to be selected uniformly

from these ranges. If more thresholds are used, then the resulting state space grows in

size leading to longer analysis times but a more accurate approximation. Similarly, fewer

thresholds result in a less accurate approximation but lead to shorter analysis times. By

selecting thresholds uniformly from a range, this method may end up not using enough

thresholds around values of a species that cause some of the calculated transition rates to

change dramatically and may use too many thresholds for values of a species that do not

affect these rates significantly.

Instead of selecting thresholds uniformly, another method is to attempt to select

thresholds for each species at points where the rates of the reactions in the systems

change drastically. This method would likely involve graphing the rates of each reaction

and searching for the inflection points of the resulting curves. This approach could then

automatically select more thresholds for the species that affect these rates at the values

around the inflection points and could select fewer thresholds for these species at values

that are further away from the inflection points.

5.1.2 Translation of a Genetic Circuit into a CTMC

The critical step in preparing a genetic circuit for stochastic model checking after

thresholds have been selected is the conversion of the circuit into a CTMC. This conversion

process begins by finding the state space of the genetic circuit. First, a sparse matrix where

each entry, pi,j , represents the rate of moving from state i to state j is constructed. Next,

a state is created with an encoding of the initial values of the species in the model. The

conversion then performs a depth first search by changing one species encoding at a time

to a higher or lower encoding if they exist in the level set L. Each valid change found this

way is pushed onto a stack. The algorithm then pops an encoding off the stack and checks

to see if a transition rate for moving from the current state to the new state exists in the

matrix. If it does, the algorithm stops exploring this path and pops the next change off the

stack to explore further. Otherwise, the transition rate is calculated using Equations 5.41

and 5.42 and is added to the matrix. Once the last encoding is popped off the stack, the

conversion from a circuit to a CTMC is complete.

Figure 5.1 shows a graphical representation of the state space for the genetic toggle

switch with thresholds selected at 0, 30, and 60 for both LacI and TetR. These threshold



61

S2
<60,60>

S1
<60,30>

S3
<30,60>

S0
<60,0>

S4
<30,30>

S5
<30,0>

S6
<0,0>

S7
<0,30>

S8
<0,60>

<LacI,TetR>

Figure 5.1: The state graph of the genetic toggle switch with thresholds selected at 0,
30, and 60 for both LacI and TetR. The initial state is state S0.

selections yield nine states labeled S0 through S8. State S0, the state where LacI is at its

highest level of 60 and TetR is at its lowest level of 0, is the initial state.

Once the entire state space of the genetic circuit is found, the transition rates between

the states are computed and inserted into the sparse matrix. These rates are determined

using the reaction rates from the genetic circuit after reaction-based abstractions from

Section 3.5 have been applied to the model. These rates are computed using the formulas

in Equations 5.41 and 5.42:

production(s, l, l′) =

∑

p∈Pro(s)

np · rate(p)

(l′[s] − l[s])
(5.41)

degradation(s, l, l′) =
kdl[s]

(l[s] − l′[s])
(5.42)

In these equations, s is the species value that is changed by the transition rate equation, l

is the current state array, l′ is the next state array, and Pro(s) returns the set of promoters

that initiate transcription of genes that lead to the production of species s. When the state

transition increases the level of species s from l[s] to l′[s], then the production formula

is used, and when the state transition decreases the level of s from l[s] to l′[s], then
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the degradation formula is used. The rate for production is computed by determining

the rate of production for each promoter p which produces species s using the rate(p)

function defined in Equation 3.40. To obtain a numerical value from this equation, the

species variables in the rate(p) equation are replaced by indexing into the l state array

to get their current values. This rate is then multiplied by np, the number of proteins

produced per transcript, to convert this rate into the rate for a single protein production.

The rate of degradation is computed as kdl[s] where kd is the degradation rate parameter

and l[s] is the starting level for species s before degradation. In both cases, these rates

must be normalized by the difference in the level before and after the state change. This

normalization is necessary because the rates are for the production or degradation of a

single molecule of s while the state change only occurs after l′[s] − l[s] molecules are

produced or l[s] − l′[s] molecules are degraded.

The conversion process coupled with the corresponding rate functions have been care-

fully constructed such that the CTMC generated gives a reasonable approximation of the

behavior of the genetic circuit. This translation procedure allows the user to efficiently

trade-off between accuracy and analysis time. Namely, the more thresholds used in

the level set, the more accurate the model becomes. Of course, using more thresholds

also increases analysis time, so the user should select the minimal number of thresholds

necessary to perform the desired analysis. Figure 5.2 presents the CTMC that is obtained

after adding transition rates to the state graph in Figure 5.1.

5.2 Stochastic Model Checking

Due to the inherently noisy nature of genetic circuits, any deterministic assertion that

is checked would most likely fail to be true. Instead, for these systems, the more interesting

question is the probability that a property is true. Determining the likelihood of properties

can be accomplished using a technique known as stochastic model checking.

There are two types of stochastic model checking used to compute the likelihood that a

property is true: statistical and numerical based techniques [58, 85]. Statistical techniques

involve simulating a system a large number of times and terminating whenever a property

is shown to be true or false. When all of the simulations are complete, statistics are

calculated on how many simulations satisfied the property in the time allotted versus the

number of simulations that failed to do so. One downside of using statistical techniques

is that the more rare an event is, the more simulations that need to be run in order to

observe it, and performing these simulations may cause the time that it takes to compute
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Figure 5.2: The state graph annotated with transition rates resulting in a continuous-
time Markov chain.

a likelihood to become prohibitively expensive. Numerical methods, on the other hand,

attempt to determine these likelihoods in a more direct method. They usually attempt to

find the state space of the model and then employ methods such as Markov chain analysis

to compute the probability of reaching a state where a given property is satisfied. These

methods are often more efficient than statistical techniques; however, they require that

the state space be computable. Both statistical and numerical methods have been utilized

by many tools such as the probabilistic model checker PRISM [45].

5.2.1 Probabilistic Temporal Logics

There are several options for logics that can be used to check properties of a genetic

regulatory circuit. Among these are probabilistic linear temporal logic (PLTL), proba-

bilistic computation tree logic (PCTL), and continuous stochastic logic (CSL). PLTL is an

extension of linear temporal logic (LTL) that is interpreted over linear time points [81, 68].

This logic includes operators such as “next,” “until,” “sometime,” and “always” and can

express properties that determine that a proposition becomes true sometime in the future

with at least a certain probability. This property language is particularly useful when

performing statistical model checking as each simulation trace is a linear execution of the

system. When analyzing a system with numerical model checking on the other hand, this
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logic does not perform as well if the system contains many different possible paths or

executions.

A logic more suited for dealing with many different possible executions of the system

is PCTL [40, 41]. This logic is an extension of computation tree logic (CTL) [17] and

is well suited for computation on discrete-time Markov chains (DTMCs). It views each

transition in a path as a time step of the system and is able to express properties that

specify that a certain event happens with some probability in a certain number of steps

of the system. This logic accomplishes this goal by replacing path quantifiers from CTL

with probability quantifiers. These replacements allow for PCTL to express more general

quantification properties because it is capable of expressing whether a property is true in a

certain percentage of paths in addition to whether a property is true in all paths. Despite

these advantages, PCTL is incapable of dealing with continuous-time.

CSL, a continuous-time variant of PCTL, has all the capabilities of PCTL and is

able to express properties of CTMCs [8, 58]. The only difference between it and PCTL

syntactically is that there is now next state operator. Also, since this logic works in

continuous-time, time bounds of properties do not need to be defined as discrete steps

but can be given as inequalities or ranges over time. As genetic regulatory circuits may

contain many different possible executions and are readily converted into CTMCs, CSL is

the best-suited logic for stochastic model checking of genetic circuits.

The grammar for CSL properties used by the stochastic model checking algorithm

presented in this chapter is given as follows:

Prop ::= U(T, Ψ, Ψ) | St(Ψ)

Ψ ::= true | Ψ ∧ Ψ | ¬Ψ | φ ≥ φ | φ > φ | φ = φ

φ ::= vi | ci | φ + φ | φ − φ | φ ∗ φ | φ/φ | Prop

T ::= true | T ∧ T | ¬T | t ≥ ci | t > ci | t = ci

where vi is a variable, ci is a constant, and t stands for time in the system. Ψ represents a

state formula that must be true in a given state and can be made up of other state formulae

combined together with logical connectives or can be made up of comparing a numerical

expression, φ, with another numerical expression. The formula U(T, Ψ1, Ψ2) represents

the probability that an execution of the system satisfies the until formula Ψ1 U
T Ψ2 which

means that Ψ1 must remain true until Ψ2 becomes true within the time frame that the

time bound expression, T, evaluates to true. The formula St(Ψ) represents the probability



65

that once the system reaches its steady state, it is in a state where Ψ is satisfied. It should

be noted that Prop is a symbol in φ’s grammar which allows for CSL properties to be

nested within other CSL properties. As a shorthand, Ψ and T can also contain false, ∨,

<, and ≤ which are easily derived. The formulas are also allowed to contain the eventually

operator, F, and the globally true operator, G, defined as follows:

F(T, Ψ) ≡ U(T, true, Ψ)

G(T, Ψ) ≡ 1 − F(T,¬Ψ)

The eventually operator is essentially used as a shorthand for describing an until property

where the left-hand side of the formula is true. For example, the eventually formula F(T, Ψ)

would simply require that Ψ becomes true before T evaluates to false. The globally true

formula G(T, Ψ) requires that Ψ remains true during the time that T evaluates to true.

This formula builds off of the eventually operator by requiring that ¬Ψ does not eventually

become true while T evaluates to true and returns one minus the resulting probability.

After the CTMC is computed and a CSL property has been specified, the stochastic

model checker checks each state to determine whether it either satisfies or fails the CSL

property. When checking transient CSL properties, the model checker determines if the

encoding either does not satisfy the left hand side of an until formula or satisfies the

right hand side of the formula. If either of these checks hold, the state is marked as

absorbing and all transitions out of the state are pruned from the CTMC. An example of

performing this pruning on the CTMC in Figure 5.2 is shown in Figure 5.3. Here, the user

is interested in the probability of LacI going to 0 within 100 seconds which is represented

by the following CSL property:

F(t ≤ 100, LacI = 0)

States S6, S7, and S8 become absorbing in the pruning process as they satisfy the right

hand side of the transient property’s formula.

5.2.2 Algorithm

The final step of stochastic model checking is to compute the probability of the CSL

property being true for the CTMC. Algorithm 5.1 determines the probability within an

error bound, ǫ, of a given CSL property, Φ, on a genetic circuit model, M . Additionally,

this algorithm requires a set of levels, L, that includes an ordered list of threshold levels,

Ls, for each species s ∈ S in the model. Each level, ls,i represents a critical threshold in
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Figure 5.3: The CTMC after it is pruned for the CSL property, F(t ≤ 100, LacI = 0).
States S6, S7, and S8 are absorbing since they satisfy the CSL property.

Algorithm 5.1: SMC(Model M ; Levels L; CSL property Φ; Error-bound ǫ)

Set C = computeCTMC(M, L,Φ)1

foreach Nested property Φ′ ∈ Φ do2

foreach State s ∈ C do3

Set M ′ = M.setInitialState(s)4

Set p = SMC(M ′, L,Φ′, ǫ)5

s.addV ariable(Φ′, p)6

Set t = determineTimeLimit(Φ)7

if t 6= ∞ then8

return transientAnalysis(C, t,Φ, ǫ)9

else10

return steadyStateAnalysis(C,Φ, ǫ)11

the amount of the species s. It is assumed that ls,0 is always 0, and ls,i−1 < ls,i for all

i > 0.

The first step of the algorithm converts the model into a CTMC, C, using the logical

abstraction discussed in Section 5.1 and the property pruning described in Section 5.2.1

(line 1). Next, the algorithm parses the CSL property and walks its expression tree looking

for any nodes that represent nested properties (line 2). If any nested properties are found,

the algorithm loops over each state in C (line 3) and alters M by setting its initial state
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to the Markov chain state, s (line 4). The algorithm then recursively calls itself for each

altered model, M ′, using the nested property, Φ′, as the new CSL property to be checked

(line 5). The probability of each recursive call, p, is stored as a variable of each s where it

can be referenced when determining if the state satisfies Φ (line 6). Once all of the nested

properties are dealt with, the algorithm determines the amount of time necessary for the

analysis, t, which is essentially the maximum value that time can take while still allowing

for the time bound expression to evaluate to true in the transient property or infinity, ∞, in

the case of a steady state property (line 7). Finally, the algorithm checks whether transient

or steady state analysis should be performed and calls the appropriate analysis method

(lines 8-11). Each of these analysis methods are presented in Sections 5.2.3 and 5.2.4,

respectively.

5.2.3 Transient Analysis

In order to perform transient analysis to determine the probability of a property being

true at a specified time, the Markov chain must be transformed using a transient Markov

chain analysis method known as uniformization [76]. Algorithm 5.2 utilizes uniformization

to determine the probability within an error bound, ǫ, of a given transient CSL property,

Φ, on a CTMC, C. The first step of the algorithm is to derive the infinitesimal generator

matrix from the CTMC by assigning the negation of the sum of the transition rates out

of each state to the diagonal entries of the matrix (line 1). After that, the absolute

value of the largest diagonal entry is selected as Γ (line 2) and the discretized stochastic

Algorithm 5.2: transientAnalysis(CTMC C; Time limit t; Property Φ; Error-
bound ǫ)

Find the infinitesimal generator matrix, QX , of C1

Compute Γ = maxi|q
X
ii | where qX

ii is a diagonal entry of QX
2

Find stochastic transition probability matrix, P = I + 1
ΓQX

3

Set K = 0, ξ = 1, σ = 1, and η = 1−ǫ
e−Γt4

while σ < η do5

Compute K = K + 1, ξ = ξ × Γt
K

, and σ = σ + ξ6

Set π(0) so initial state has probability 1 and all others 07

Set π = π(0) and y = π(0)8

for k = 1 to K do9

Compute y = yP × Γt
k

and π = π + y10

Compute π(t) = e−Γtπ11

return
∑

of all states in π(t) that satisfy Φ12
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probability matrix, P , is computed (line 3). The remainder of the algorithm analyzes

the CTMC using uniformization. The algorithm first needs to know the number of terms

in its summation, K, which it determines iteratively (lines 4-6). The algorithm then

initializes the initial state’s probability to 1 and all other states’ probabilities to 0 (line 7)

and proceeds by iteratively performing vector-matrix multiplications and vector additions

to simulate the evolution of the system’s likelihood of being in any state (lines 8-10).

After these computations are complete, the uniformization algorithm normalizes the final

probabilities in π (line 11). Finally, after applying this method, each state is now annotated

with the probability of being in that state at the specified time. At this point, the final

probability for the CSL property is determined by summing over all states in which the

right-hand side of the until formula is satisfied (line 12).

An example of using this method to analyze the CTMC presented in Figure 5.3 is

presented in Figure 5.4. This figure shows the CTMC annotated with probabilities after

applying transient Markov chain analysis to it. The sum of the probability of reaching

these states represents the probability of satisfying the property, which is about 5.9

percent.

5.2.4 Steady State Analysis

Steady state analysis of the genetic circuit can be performed directly on the CTMC

without the need for any transformations by using the power iteration method [76]. Algo-

rithm 5.3 determines the probability within an error bound, ǫ, of a given steady state CSL
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Figure 5.4: The CTMC annotated with probabilities after applying transient Markov
chain analysis with the CSL property, F(t ≤ 100, LacI = 0).
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Algorithm 5.3: steadyStateAnalysis(CTMC C; Property Φ; Error-bound ǫ)

Find the embedded Markov chain, S, of C1

Set p = findPeriod(S)2

Set i = 0 and diff = ∞3

Set π(i) so initial state has probability 1 and all others 04

while diff > ǫ do5

Compute π = π(i)S6

Set i = (i + 1)%p7

Set diff = max[π − π(i)]8

Set π(i) = π9

Compute π =

p−1
X

i=0

π(i)

p
10

foreach πi ∈ π do11

Compute πi = πi
P

qij
12

Compute π = π
P

πi
13

return
∑

of all states in π that satisfy Φ14

property, Φ, on a CTMC, C. The first step of the algorithm is to derive the embedded

Markov chain (EMC) from the CTMC by dividing each transition rate in the chain by the

sum of all transition rates out of a given state (line 1). The next step is to find the period

of the EMC (line 2). The period is necessary because if the EMC is periodic, then instead

of converging to an invariant distribution, the probability values of each state in the chain

oscillates as iterations are performed. Next, the iteration counter and difference checking

variables are set to zero and infinity, respectively (line 3). The algorithm then initializes

the initial state’s probability to 1 and all other states’ probabilities to 0 (line 4). At this

point, the algorithm iterates by continually multiplying the previous distribution, π(i), by

the EMC to compute the new distribution, π, and checks to see if the new distribution

has changed over the old distribution by more than the error-bound amount, ǫ (lines 5-9).

This process, however, must take into account the period of the EMC by keeping track of

p different distributions. The distribution that the new distribution is compared against

is determined by finding the modulus of the increment counter and the period in the

increment step (line 7). The difference between this distribution and the new distribution

is then calculated (line 8), and the new distribution replaces the old distribution (line 9).

Next, the alternating distributions are summed together and normalized by the period

(line 10). After this step, the distribution must be normalized to take into account the

transition rates in the original CTMC. In order to accomplish this normalization, each of
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the elements of the final distribution are divided by the sum of all transition rates out of

its corresponding state (lines 11-12), and the resulting distribution is divided by the sum

of all the probabilities in the distribution so that they sum to one (line 13). Lastly, the

final probability for the CSL property is determined by summing over all states in which

the formula is satisfied (line 14).

An example of using this method to analyze the CTMC presented in Figure 5.2 is

presented in Figure 5.5. This figure shows the CTMC annotated with probabilities after

applying steady state Markov chain analysis to it. In this example, the user may be

interested in the probability of the system being in a state where LacI is 0 in the long run

which is represented by the following CSL property:

St(LacI = 0)

Summing over the states that satisfy this property, states S6, S7, and S8, results in a

probability of about 48.2 percent.
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Figure 5.5: The CTMC annotated with probabilities after applying steady state Markov
chain analysis.



CHAPTER 6

CASE STUDIES

The iSSA and stochastic model checking techniques are useful methods on their own

for determining the validity of models of genetic circuits; however, when these methods are

used in concert, they can be used to effectively perform design space exploration of genetic

circuits. This chapter presents several examples where using the iSSA and stochastic model

checking allows for better design choices when constructing genetic circuits. Section 6.1

describes and analyzes several genetic oscillator circuits using the design space exploration

methodology. Section 6.2 shows how this methodology can be applied to genetic circuits

that represent state holding gates to help design more robust circuits with switches.

6.1 Genetic Oscillators

Genetic oscillators are important in synthetic and systems biology as they are es-

sentially used as clocks to ensure that important events happen periodically in genetic

circuits. For example, the cell cycle is driven by a genetic oscillator that ensures that

the cell grows and divides as it is supposed to. Since cells can be subject to a variety of

different environments, genetic oscillators must be robust to stochastic events and noise.

This section analyzes the robustness of several genetic oscillators including a circadian

rhythm model, the repressilator, and the dual-feedback genetic oscillator.

6.1.1 Circadian Rhythm

The circadian rhythm model described in [82] is shown in Figure 6.1. In this model,

species A activates the promoters DA and DR leading to a spike in the amounts of both A

and R protein. When these populations start growing, A and R molecules start binding

to from C complexes. This binding leads to A being unable to activate the promoters and

all the species degrade away. The system stays in a state with low counts of all the species

until some spurious production of A allows for the activation DA and DR again.

An example of performing ODE and SSA simulations on the circadian rhythm model

is shown in Figure 6.2. Simulation results for the circadian rhythm model are expected
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Figure 6.1: Genetic circuit model for circadian rhythm. In this model, A activates both
A and R through the promoters DA and DR, respectively. A and R also bind together to
form the complex C. This model is expected to produce oscillatory behavior of the A, R,
and C species.

to result in oscillatory behavior of the A, R, and C species. This figure shows that an

individual SSA simulation run captures the expected behavior. However, this figure also

shows an ODE simulation of the circadian rhythm model where one pulse is observed

and then there are no subsequent pulses due to the simulation missing stochastic events.

Similarly, the plot of the average of 100 SSA simulations is only able to capture one definite

pulse. The rest of this plot shows how since the subsequent pulses can come at different

times, the average of 100 runs suffers from the smoothing effect and fails to capture any

other pulses.

To further show the advantages and disadvantages of the iSSA MPDE method, Fig-

ure 6.3(a) shows simulation results for species A using the MPDE method with 100

stochastic runs. These results retain the pulses, and correctly reveal the circuit’s typi-

cal behavior as opposed to the ODE and average SSA results presented in Figure 6.2.

Figure 6.3(b), on the other hand, shows a simulation of the circadian rhythm model using

the MPDE method with abstraction. In this plot, the MPDE method erroneously predicts

that the circuit pulses with increasingly larger amplitudes than the previous pulses and

with irregular frequencies. These plots serve as more evidence that MPDE tends to be

less attractive for use with abstracted simulation models.

The adaptive iSSA using the median path method, the most robust iSSA method,

correctly predicts the “typical” behavior of the circadian rhythm model. Figure 6.4

presents results of applying this method to an abstracted version of the model. This

plot shows that the adaptive median path iSSA produces a plot that looks similar to



73

Figure 6.2: Simulation results for the circadian rhythm model. This plot shows an ODE
simulation run, a single SSA simulation run, and the average of 100 SSA simulation runs.
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(a)

(b)

Figure 6.3: MPDE simulation results for the circadian rhythm model. These results use
a time increment of 0.25 hours with 100 runs for each time increment. (a) These results
are obtained by simulating the model without abstraction. (b) These results are obtained
by simulating the model with abstraction. As seen in this plot, using abstraction with
MPDE causes the simulation to produce erroneous results.
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Figure 6.4: Adaptive median path iSSA results for the circadian rhythm model.

the individual SSA run from Figure 6.2. As far as run-times are concerned, it takes the

ODE method about 3 seconds, the SSA about 1 minute and 25 seconds, the iSSA with

MPDE and no abstraction about 3 minutes and 10 seconds, and the adaptive median path

iSSA about 1 minute and 30 seconds to obtain results. These run-times show that the

adaptive median path iSSA is comparable in efficiency to the SSA which makes sense as it

is built around the SSA. These results also demonstrate that this method is more efficient

than the iSSA with MPDE as it is able to obtain results in half the time. Although this

comparison does not yield a significant difference in run-time for this example, run-times

for other examples can be orders of magnitude greater which shows how beneficial an iSSA

method that allows abstraction can be for simulation.

6.1.2 Repressilator

The repressilator model shown in Figure 6.5 is comprised of the species CI, LacI, and

TetR that are connected in a loop [22]. This circuit is a ring oscillator where each species

represses the next one forming the loop. When one of the species (e.g., LacI) is produced,

it represses the next species in the chain (e.g., TetR). This repression allows the species

downstream of that species to start being produced (e.g., CI) which in turn leads to the

repression of the first species. This cycle continues causing this circuit to oscillate.
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Figure 6.5: Genetic circuit model for repressilator. In this circuit, CI represses the
production of LacI, LacI represses the production of TetR, and TetR represses the
production of CI. This model is expected to produce oscillatory behavior of the CI, LacI,
and TetR species.

An example of performing ODE and SSA simulations on the repressilator is shown in

Figure 6.6. This figure shows that an individual SSA simulation run captures oscillations

of the CI species. However, this figure also shows that the ODE simulation results, as well

as, the average of 100 SSA simulations do not capture oscillations. Instead, they predict

that the circuit more or less stabilizes at a false intermediate value.

The repressilator provides a good example of why the adaptive iSSA is a more accurate

simulation method than its nonadaptive counterpart. An example of comparing the

nonadaptive and the adaptive versions of the median path method on the repressilator

is shown in Figures 6.7 and 6.8. Figure 6.7(a) and (b) show the result of simulating

this circuit using the nonadaptive median path. With different time increment choices,

the period of oscillation changes. However, when an adaptive version of the median

path method is used as in Figure 6.8(a) and (b), the time increments change to try and

capture 25 of the slowest reaction events in each increment which leads to stable results

whether the model is simulated with or without reaction-based abstraction. Also, like the

circadian rhythm example, the adaptive median path iSSA method has a run-time that is

comparable to the SSA as both of these methods have a run-time of under 2 seconds.

After using the iSSA to verify that the repressilator oscillates, stochastic model check-

ing can be used to determine the probability that the circuit oscillates. Figure 6.9

presents the results of applying steady state analysis to the repressilator using 9 lev-

els evenly spaced between 0 and 80 for CI, LacI, and TetR and the CSL property,

St((CI ≥ 30 ∧ F(t ≤ limit, CI < 30) ≥ 0.95) ∨ (CI < 30 ∧ F(t ≤ limit, CI ≥ 30) ≥ 0.95)),

which determines the likelihood that the value of the CI species is low and goes high or

is high and goes low within a predetermined amount of time. These results show that
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Figure 6.6: Simulation results for the repressilator. This plot shows an ODE simulation
run, a single SSA simulation run, and the average of 100 SSA simulation runs.
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(a)

(b)

Figure 6.7: Nonadaptive median path simulation results for the repressilator. Each plot
was produced with 100 simulation runs. (a) Results produced from the median path
method with a time increment of 10. (b) Results produced from the median path method
with a time increment of 25. As seen in these plots, the median path method produces
different results for a different choice of time increment.
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(a)

(b)

Figure 6.8: Adaptive median path simulation results for the repressilator with the desired
number of events during each time increment equal to 25. (a) Results obtained without
reaction-based abstraction. (b) Results obtained with reaction-based abstraction. This
method adapts the time increment in order to try and capture 25 of the slowest reaction
events in each increment which allows it to obtain good results with or without reaction-
based abstraction.



80

Figure 6.9: Stochastic model checking results for the repressilator. This plot presents
the results of checking a property on the repressilator that represents states of the circuit
switching from low to high or high to low within a specified amount of time. The
probabilities represent the likelihood that the circuit oscillates.

as the time limit is extended, the likelihood of the circuit oscillating increases until for

800 seconds, it is almost certain to oscillate. In addition to the probability increasing as

the time limit increases, the run-time also increases because it takes longer to perform

analysis of nested properties with larger time bounds. The run-time for a time limit of

200 seconds is 3 minutes, for 400 seconds is 5 minutes and 40 seconds, for 600 seconds is 8

minutes and 25 seconds, and for 800 seconds is 11 minutes. This type of analysis can give

a designer an idea of how reliable a circuit like the repressilator is as compared to other

oscillator circuits so that the best circuit can be selected for a given task.

6.1.3 Dual-Feedback Genetic Oscillator

The dual-feedback genetic oscillator model shown in Figure 6.10 is composed of two

identical promoters, P1 and P2, which are activated by AraC and repressed by LacI [77].

LacI is produced when transcription is initiated at promoter P1 and the lacI gene is

transcribed. Similarly, AraC is produced when transcription is initiated at promoter P2

and the araC gene is transcribed. AraC builds up in the system causing LacI to build
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Figure 6.10: Genetic circuit model for the dual-feedback genetic oscillator. In this model,
LacI represses itself and AraC through promoters P1 and P2. Conversely, AraC activates
itself and AraC through the same promoters. This model is expected to produce oscillatory
behavior of the LacI and AraC species.

up. LacI is then able to repress promoters P1 and P2 which causes both AraC and LacI

concentrations to drop leading to AraC building up again causing the circuit to oscillate.

The model used is assumed to initially include 20 P1 and P2 promoters and 100 RNAP

molecules. The ODE results and average of 100 SSA runs shown in Figure 6.11 are poor

indicators of the system’s behavior because the amount of AraC is never shown to reach

its low point of zero like the individual SSA run in this plot does. In this system, the

SSA sample-paths move out of phase very quickly, which can wash out the oscillations

when conventional SSA averaging is performed. The iSSA results for this system are

shown in Figure 6.12 and more clearly indicate the oscillatory behavior of this system.

These results are obtained using the adaptive median path iSSA method and use 100 runs

and 25 slow events per increment. This analysis provides more support for the fact that

the adaptive iSSA results are found to be fairly insensitive to parameter variations. For

instance, when the parameters are varied, e.g., 10 to 25 events per increment and 10 to

100 runs, the results do not markedly change. Additionally, the run-time for the ODE is

under a second, for the SSA is about 2 seconds, and for the adaptive median path iSSA is

about 1 second providing more evidence that the adaptive median path iSSA performs as

efficiently as the SSA. This example demonstrates that the adaptive iSSA is robust when

used to simulate highly dynamic reaction systems.

Similar to the repressilator, the dual-feedback genetic oscillator can be analyzed using

stochastic model checking to determine the probability that it oscillates within a certain

time bound. Figure 6.13 presents the results of applying steady state analysis to this model

using 8 levels evenly spaced between 0 and 120 for AraC and LacI and the CSL property,
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Figure 6.11: Simulation results for the dual-feedback genetic oscillator. This plot
shows an ODE simulation run, a single SSA simulation run, and the average of 100 SSA
simulation runs.

Figure 6.12: iSSA simulation results for the dual-feedback genetic oscillator. This plot
shows the results of applying the adaptive median path iSSA method using 100 simulation
runs and 25 slow reaction events per time increment.
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Figure 6.13: Stochastic model checking results for the dual-feedback genetic oscillator.
This plot presents the results of checking a property on the dual-feedback genetic oscillator
that represents states of the circuit switching from low to high or high to low within
a specified amount of time. The probabilities represent the likelihood that the circuit
oscillates.

St((AraC ≥ 60 ∧ F(t ≤ limit, AraC < 60) ≥ 0.95) ∨ (AraC < 60 ∧ F(t ≤ limit, AraC ≥

60) ≥ 0.95)), which captures the probability that AraC is low and goes high or is high

and goes low within a predetermined amount of time. Like the repressilator, these results

show that as the time limit is extended, the likelihood of the circuit oscillating increases.

The run-time for a time limit of 1000 seconds is 40 seconds, for 2000 seconds is 1 minute

and 25 seconds, for 3000 seconds is 1 minute and 55 seconds, and for 4000 seconds is 2

minutes and 40 seconds. These results show that the dual-feedback genetic oscillator has

a much longer period than the repressilator. A designer could use this information to

select the appropriate genetic oscillator based on how fast the oscillations need to be for

a particular application.

6.2 State Holding Gates

Another type of construct that is probably as important to a cell as a genetic oscillator

is a state holding gate. State holding gates serve to set cells into specific modes where

they behave a certain way. These gates can then be reset by applying input signals to

the circuit that cause the cell to transition into a different mode. An example of how
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state holding gates can be beneficial to cells is to control change behavior when they move

from a nutrient rich environment to a nutrient deficient environment. With the lack of

nutrients as inputs to the cell, it can transition to an energy saving mode. Once the cell

moves back into an environment where there are nutrients, the cell can then transition

back into a more active mode and carry on with other cellular activities. This section

analyzes the robustness of several state holding gates including the genetic toggle switch,

three implementations of a genetic Muller C-element, and a quorum trigger model.

6.2.1 Toggle Switch

Figure 6.14 shows the results of simulating the genetic toggle switch, the running

example throughout this dissertation, using ODEs and the SSA. In this figure, the toggle

switch’s inputs are varied and the output is supposed to go high at 5,000 seconds and back

low at 15,000 seconds. This switching is reflected well in this plot as the ODE result, the

single SSA result, and the average SSA result all follow this behavior. However, both the

ODE and average SSA results fail to capture the noise that is observed when analyzing

the individual SSA runs. On the other hand, the adaptive iSSA simulation shown in

Figure 6.15 accurately captures the desired behavior, as well as the stochastic noise in

the system. Run-times for each of these simulation methods are about 12 seconds. These

results again show that performing simulations using iSSA is often as efficient as simulating

with other simulation methods.

As shown in Figure 4.16 from Chapter 4, the iSSA predicts that when the genetic

toggle switch is initialized to a state where all of the molecules are set to a low value and

the inputs are not applied, the circuit either switches ON or OFF. In order to quantify the

probability of each of these events happening, stochastic model checking can be utilized to

determine the likelihood that the circuit ends up in the ON or the OFF state. Figure 6.16

presents results of applying both statistical model checking and steady-state Markov chain

analysis to determine these probabilities. These results show that switching ON and OFF

are roughly equally likely; however, the simulation approach takes 1 minute and 40 seconds

to simulate 100,000 runs and obtain results while the Markov chain analysis is able to

obtain results in about 1 second for 11 levels selected uniformly between 0 and 100 for

both LacI and TetR.

Due to stochasticity and noise, a state holding gate like the toggle switch can fail.

A useful experiment for this circuit is to determine the probability that it changes state

erroneously within a cell cycle (2,100 seconds) which occurs if some spurious production of
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Figure 6.14: Simulation results for the genetic toggle switch. This plot shows an ODE
simulation run, a single SSA simulation run, and the average of 100 SSA simulation runs.
IPTG is added to the circuit to set it at 5,000 seconds and taken away at 10,000 seconds.
aTc is then added to reset it at 15,000 seconds and taken away at 20,000 seconds.

Figure 6.15: iSSA simulation results for the genetic toggle switch. This plot shows
results of applying the adaptive median path iSSA method using 100 simulation runs and
25 slow reaction events per time increment. Like the Figure 6.14, the circuit is supposed
to switch ON at 5,000 seconds and OFF at 15,000 seconds due to varying inputs.
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(a)

(b)

Figure 6.16: Stochastic model checking results for the genetic toggle switch with an
initial state of both inputs low. (a) Results produced by performing 100,000 stochastic
simulation runs of the toggle switch and statistically computing the proportion that switch
ON and the proportion that switch OFF. (b) Steady-state Markov chain analysis results
computed using the steady-state property St((TetR > 40) ∧ (LacI < 20)) to capture the
circuit switching ON and the steady-state property St((LacI > 40) ∧ (TetR < 20)) to
capture the circuit switching OFF.
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the low signal inhibits the high signal enough to allow it to degrade away and switch state.

For this experiment, the toggle switch is initialized to a starting state where LacI is set to

a high state of 60 molecules and TetR is set to a low state of 0 molecules. In order to test

whether or not it changes state, the CSL property, F(t ≤ 2100, LacI < 20∧TetR > 40), is

checked. This property makes states absorbing in which LacI has dropped below 20 (the

low state) and TetR has risen above 40 (the high state). For this analysis, 9 levels are

selected for LacI uniformly distributed between 0 and 80, and 11 levels are selected for

TetR uniformly distributed between 0 and 50, which produces a CTMC with 99 states.

Levels are selected to ensure that one of the levels captures the initial amount for each

species and that the levels span over the possible values for each species going slightly

above and below the property bounds. It should be emphasized that this selection is a

very simple and straightforward choice for the levels.

Figure 6.17(a) shows a comparison of results found using simulation both with and

without reaction-based abstraction [56] and applying transient Markov chain analysis.

This figure shows that the transient Markov chain analysis tracks the simulation results

fairly closely and ends up with a final probability of 1.35 percent which is quite close to the

1.2 percent found by simulation of the full model. However, the transient Markov chain

analysis method greatly outperforms the simulation based approaches as it takes under 1

second to obtain results while the simulation with abstraction takes about 3 minutes and

15 seconds to perform 32,000 runs and the simulation without abstraction takes about

43 minutes to perform the same number of runs. It is clear from Figure 6.17(a) that the

stochastic simulations have not yet converged to the mean. The choice of 32,000 simulation

runs is chosen in order to achieve 95 percent confidence that the result is within 10 percent

assuming the true failure rate is 1.2 percent, the approximate value after 2100 seconds.

This value is determined using the equation below:

d = 1.96 ×

√
1 − p

p × n
(6.43)

where d is the relative error bound, p is the predicted probability, and n is the number of

simulation runs [55, 37]. It should be noted that for earlier time points where the failure

rate is lower, the error increases. For example, at 1000 seconds, the full simulation predicts

a probability of failure of 0.3 percent, but we are only 95 percent confident that this result

is within 20 percent of the true value. Figure 6.17(b) shows another comparison of applying

these same analysis methods to the genetic toggle switch but with similar run-times to

the Markov analysis. In this plot, the full model could only perform 20 runs in under 1



88

(a)

(b)

Figure 6.17: Time course plots showing the probability of the genetic toggle switch
changing state erroneously. (a) Compares the results of performing 32,000 simulation
runs both with and without reaction-based abstraction with Markov chain analysis. (b)
Compares the same results as in (a) but with 300 simulation runs with reaction-based
abstraction and 20 runs without reaction-based abstraction in order to match the run-time
of the Markov chain analysis. The CSL property in both cases is F(t ≤ 2100, LacI <
20 ∧ TetR > 40).
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second and the abstracted model had enough time for 300 runs. Using Equation 6.43, this

computation results in errors of at least 382 percent for the full model and 99 percent for

the abstracted model.

The next experiment is to determine the response time of the circuit when switching

from the OFF state to the ON state, and these results are presented in Figure 6.18. This

analysis uses the same CSL property but a slightly different initial condition. As before,

LacI is set to 60 and TetR is set to 0, but IPTG is set to 100 representing that it has

just been added to set the toggle switch to the high state. For this experiment, 14 levels

for LacI are selected uniformly distributed between 0 and 130, since individual simulation

results show it reaching a much higher value than in the last experiment. For TetR, only

5 levels are used uniformly selected between 0 to 60 because less resolution is required

for catch its change from a low to high state. This level selection results in a CTMC

of 70 states. Again, transient Markov chain analysis tracks the simulation results fairly

closely ending up with a final probability of 98.7 percent while the simulation of the full

model results in 98.9 percent. Also like the previous example, the transient Markov chain

Figure 6.18: Time course plot showing the probability of the genetic toggle switch
changing state correctly in response to an input change. Like Figure 6.17, this plot
compares the results of using simulation both with and without reaction-based abstraction
and analysis of the CTMC using Markov chain analysis with the same CSL property,
F(t ≤ 2100, LacI < 20 ∧ TetR > 40), but with a different initial value of IPTG.
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analysis method outperforms the simulation-based approaches as it takes about a half

a second to obtain results while 32,000 simulation runs of the reaction-based abstracted

model takes about 1 minute and the full model takes about 3 hours and 12 minutes. It

should be noted that the reason that the full model takes so much longer to simulate than

the abstracted model is that in the presence of IPTG, the full model simulation spends

an exorbitant amount of time fire binding and unbinding reactions of LacI and IPTG.

With this analysis method, the design space can be efficiently explored. For example,

a genetic designer may consider the effect of parameter variation on robustness and

performance. One important parameter for the genetic toggle switch is the degradation

rate, kd, and the results of varying this parameter are shown in Figure 6.19. These results

indicate that tuning the degradation rate has a significant effect. If it is too high, the

circuit is less robust, but if it is too low, it responds too slowly.

6.2.2 C-Element

The next circuit analyzed is a genetic Muller C-element [67, 66]. C-elements are

commonly used by asynchronous designers to coordinate parallel processes. Our anal-

ysis considers three implementations of this circuit with their logic diagrams shown in

Figure 6.20. For each of these circuits, the inputs are IPTG and aTc and the output

is GFP similar to the genetic toggle switch example. The first implementation shown

in Figure 6.20(a) has a majority gate design where the two inputs to the circuit and a

feedback signal from the circuit’s output are fed through three NAND gates in varying

combinations. The outputs from these NAND gates are then compared with each other

and the signal that has the majority of the votes is selected as the new output. The

next implementation shown in Figure 6.20(b) has a speed-independent design. The idea

behind this circuit is that no matter how fast or slow the gates change, the circuit behaves

correctly. The final implementation shown in Figure 6.20(c) uses the genetic toggle switch

described earlier with some additional logic. This circuit takes an inverted NAND gate

signal of the two inputs as the set part of the circuit and an inverted NAND gate signal

of the inverted inputs as the reset part of the circuit.

These circuits have slightly different state holding properties when compared to the

genetic toggle switch. Instead of switching when one input is applied or taken away, these

circuits only switch when both inputs are applied; however, they maintain whatever state

they are in until both of the inputs are simultaneously ON or OFF. Figures 6.21, 6.22, and

6.23 present ODE, SSA, and iSSA simulations of the majority gate, speed-independent,
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(a)

(b)

Figure 6.19: Results showing the effect of varying the degradation rate, kd, for the genetic
toggle switch. (a) Plot depicting the probability of the genetic toggle switch changing
state erroneously within 2100 seconds for different values of kd. (b) Plot depicting the
probability of the genetic toggle switch changing state correctly within 2100 seconds in
response to input change for different values of kd.
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Figure 6.20: Logic diagrams for the genetic Muller C-element. (a) Majority gate design.
(b) Speed-independent design. (c) Toggle switch design.
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(a)

(b)

Figure 6.21: Simulation results for the majority gate C-element. (a) Plot showing an
ODE simulation run, a single SSA simulation run, and the average of 100 SSA simulation
runs. (b) Plot depicting results of applying the adaptive median path iSSA method using
100 simulation runs and 25 slow reaction events per time increment.
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(a)

(b)

Figure 6.22: Simulation results for the speed-independent C-element. (a) Plot showing
an ODE simulation run, a single SSA simulation run, and the average of 100 SSA
simulation runs. (b) Plot depicting results of applying the adaptive median path iSSA
method using 100 simulation runs and 25 slow reaction events per time increment.
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(a)

(b)

Figure 6.23: Simulation results for the toggle switch C-element. (a) Plot showing an
ODE simulation run, a single SSA simulation run, and the average of 100 SSA simulation
runs. (b) Plot depicting results of applying the adaptive median path iSSA method using
100 simulation runs and 25 slow reaction events per time increment.
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and toggle switch implementations, respectively. In each of these analyses, IPTG is added

to the circuit at 5,000 seconds. Each circuit does not switch from OFF to ON, however,

until aTc is also added at time 10,000 seconds. When IPTG is removed at 15,000 seconds,

the circuits maintain state until aTc is removed at 20,000 seconds. These results show

that the ODE and average SSA simulations capture these state changes but fail to capture

the stochastic noise visible in the individual SSA run. Conversely, the iSSA results clearly

show this stochastic noise. For each of these circuits, run-times for ODE are about 30

seconds, for SSA are about 1 minute, and for iSSA are about 1 minute once again showing

that the efficiency of iSSA is comparable to that of SSA.

Since stochastic noise is present in these circuits as it is in the genetic toggle switch,

these circuits are analyzed to find their failure and response rates. Instead of analyzing

these circuits against a property that only checks the amount of GFP, dual-rail proper-

ties are analyzed because they provide a better measure of the circuit changing state.

Figure 6.24(a) shows a comparison of the failure rate analysis when each circuit is set

in its high mixed state meaning that one input is high, one input is low, the output is

high, and the internal species are set appropriately. For this analysis, the CSL property,

F(t ≤ 2100, GFP < 20 ∧ E > 40), is used to analyze the majority gate implementation

with 16 evenly spaced levels for GFP between 0 and 150, 16 evenly spaced levels for E

between 0 and 45, 6 evenly spaced levels for D between 0 and 250, and 5 evenly spaced

levels for X, Y, and Z between 0 and 120. The CSL property for the speed-independent

implementation is F(t ≤ 2100, S3 < 20∧S2 > 80), and the levels used are 11 evenly spaced

levels for S2 between 0 and 100, 11 evenly spaced levels for S3 between 0 and 150, 6 evenly

spaced levels for S1 between 0 and 250, 4 evenly spaced levels for S4 and GFP between 0

and 120, and 4 evenly spaced levels for X, Y, and Z between 0 and 90. Finally, the CSL

property for the toggle switch implementation is F(t ≤ 2100, Y < 40 ∧ Z > 80), and the

levels used are 16 evenly spaced levels for Y between 0 and 225, 16 evenly spaced levels

for Z between 0 and 90, 6 evenly spaced levels for F between 0 and 250, 5 evenly spaced

levels for GFP between 0 and 120, and 5 evenly spaced levels for D, E, and X between 0

and 80.

Run-times for these analyses are 13 minutes and 15 seconds for the majority gate, 20

minutes and 15 seconds for the speed-independent, and 21 minutes and 45 seconds for

the toggle switch. This increase in run-time over the genetic toggle switch is due to the

fact that each of these models contains substantially more species. In addition, most of
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(a)

(b)

Figure 6.24: Results showing the probability of the C-elements changing state for varying
inputs. (a) Time course plot showing the probability of the C-element implementations
losing state with mixed inputs. (b) Time course plot showing the probability of the
C-element implementations changing state correctly in response to both inputs changing
state. These plots compare the results of using Markov chain analysis on the major-
ity gate implementation, the speed-independent implementation, and the toggle switch
implementation.
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the species in the C-element models have more levels defined for them resulting in larger

CTMCs. For instance, compared to the genetic toggle switch’s 70 to 99 states, the majority

gate implementation has nearly 200,000 states, the speed-independent implementation

has about 750,000 states, and the toggle switch implementation has nearly 1,000,000

states. From the plot in Figure 6.24(a), it can be discerned that the toggle switch

implementation is the most likely to maintain its state with mixed inputs, followed by

the speed-independent implementation, and finally the majority gate implementation.

In order to determine the response time of the C-element circuits, the same initial

condition, levels, and properties for each circuit are used with the exception that both

inputs are set low indicating that the circuit’s output should change from high to low.

The results of this analysis are shown in Figure 6.24(b) where it can be seen that the

toggle switch implementation again outperforms the speed-independent and majority gate

circuits. These analyses have similar run-times to the failure rate experiment with the

majority gate taking 11 minutes and 15 seconds, the speed-independent taking 20 minutes,

and the toggle switch taking 22 minutes.

After determining that the genetic toggle switch Muller C-element is the most robust

(perhaps a surprising conclusion to some), we can now perform various parameter variation

experiments to determine the best parameter choices for the application. Figure 6.25

gives an example of varying the degradation rate of this circuit similar to the experiments

performed on the genetic toggle switch in Figure 6.19. These results show comparable

behavior to that of the genetic toggle switch indicating that there is a trade-off between

robustness and responsiveness when varying this parameter.

6.2.3 Quorum Trigger

The final circuit analyzed is a quorum trigger model presented in Figure 6.26. This

circuit is designed to be placed in many cells in a population where it is supposed to allow

cells to switch into an ON state in the presence of a signal in the environment. It works

by allowing the production of LuxR to be activated by an environmental signal which

can then bind with a derivative of LuxI known as 3OC6HSL to form a complex. This

complex then continues to activate LuxR and LuxI production leading to the cell locking

into the ON state. In order to reinforce the switching in all the cells in the quorum, this

circuit contains a method to communicate to other cells through 3OC6HSL signal which

can diffuse through the cellular membrane and into the medium to be taken up by other

cells and affect their quorum trigger circuits.
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(a)

(b)

Figure 6.25: Results showing the effect of varying the degradation rate, kd, for the
toggle switch implementation of the genetic Muller C-element. (a) Plot depicting the
probability of the toggle switch implementation of the genetic Muller C-element changing
state erroneously for different values of kd. (b) Plot depicting the probability of the
toggle switch implementation of the genetic Muller C-element changing state correctly in
response to an input change for different values of kd.
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Figure 6.26: Genetic circuit model for quorum trigger circuit. In this model, the pro-
duction of LuxR is activated by an signal in the environment of the circuit. Additionally,
production of both it and LuxI are activated by a complex which is formed when LuxR
binds with 3OC6HSL, a derivative of LuxI that diffuses through a cell’s membrane and
into the medium the cell is in. This circuit basically works by detecting the presence of
the environmental signal and switching to an ON state where it then communicates with
other cells through the 3OC6HSL signal to let them know that they should also switch
ON.

Figures 6.27, 6.28, and 6.29 present the results of applying the iSSA to the quorum

trigger while varying the basal rate of production. In Figure 6.27, this rate is set to 0

and the iSSA predicts that the circuit does not switch ON when this is the case with a

run-time of 25 seconds. When the rate is increased to 0.0001 as in Figure 6.28, the iSSA

shows that the circuit only switches when the environmental signal is set to a high value

with a run-time of 1 minute and 5 seconds. However, the iSSA always predicts that the

circuit switches ON when the basal rate is too high with a run-time of 2 minutes and 10

seconds as shown in Figure 6.29.

Stochastic model checking analysis of the quorum trigger circuit is able to confirm

the predictions made by the iSSA and give some insight into the likelihood of the circuit

switching ON for various values of kb. Figure 6.30 shows that the probability that the

circuit switches when the value of kb is 0 meaning that without leakage in production,

the circuit cannot switch. Figure 6.31, on the other hand, shows that the circuit switches

ON after 10,000 seconds with a probability of about 8 percent for a low environmental

signal and with a probability of about 70 percent for a high environmental signal. This

difference is desirable as there should be a markable difference in how the circuit responds
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Figure 6.27: iSSA simulation results for the quorum trigger when the basal rate of
production, kb, is set to 0. This plot shows that the circuit is unable to switch ON
without some leakage in production.

Figure 6.28: iSSA simulation results for the quorum trigger when the basal rate of
production, kb, is set to 0.0001. This plot shows that the circuit only switches ON when
the environmental signal is high for a low basal rate.



102

Figure 6.29: iSSA simulation results for the quorum trigger when the basal rate of
production, kb, is set to 0.01. This plot shows that the circuit always switches ON due to
the basal rate being too high.

Figure 6.30: Stochastic model checking results for the quorum trigger when the basal
rate of production, kb, is set to 0. These results confirm that the quorum trigger is unable
to switch ON when the basal rate is 0.



103

Figure 6.31: Stochastic model checking results for the quorum trigger when the basal
rate of production, kb, is set to 0.0001. These results confirm that the quorum trigger is
only able to switch ON when the environmental signal is high for a median value of the
basal rate.

in the presence of the environmental signal. Confirming the iSSA analysis, having a basal

rate that is 0.01 causes the circuit to switch ON with 100 percent probability regardless

of the value of the environmental signal as is seen in Figure 6.32. The stochastic model

checking results are obtained with run-times of 2 seconds when kb is 0, 20 seconds when

kb is 0.0001, and 20 seconds when kb is 0.01. These analyses show that a designer of this

circuit would need to carefully tune the basal rate of production to be a value somewhere

in the neighborhood of 0.0001 in order to ensure that the circuit does not switch ON too

early but also does switch ON in a medium where the environmental signal is present.
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Figure 6.32: Stochastic model checking results for the quorum trigger when the basal
rate of production, kb, is set to 0.01. These results confirm that the quorum trigger always
switches ON if the basal rate is too high.



CHAPTER 7

CONCLUSIONS

Synthetic biology has the potential to allow researchers and scientists to design bi-

ological systems to solve a variety of problems. These problems include, among other

things, the clean up of toxic materials, the production of medicines and biofuels, and the

destruction of tumor cells. However, in order to design these systems, efficient methods

to perform design space exploration through analysis and verification of computational

models are necessary. This dissertation proposes one such methodology that can greatly

aid synthetic biologists in the design process. This chapter concludes the dissertation by

giving a summery in Section 7.1 and presenting possible future work and extensions in

Section 7.2.

7.1 Summary

This dissertation presents a methodology for performing design space exploration of

synthetic genetic circuits in order to allow researchers to construct circuits that behave

as intended and that are more robust to external noise and varying environments. This

methodology involves utilizing iSSA and stochastic model checking to analyze models of

genetic circuits. By performing these analyses in tandem, different design and parameter

choices of a circuit can be efficiently analyzed and considered.

The iSSA delivers information about a genetic circuit that can often be hidden when

using other simulation methods. By performing simulations in small time increments,

it is capable of capturing important stochastic events that lead to the circuit exhibiting

its “typical” behavior. The method itself can also be tuned to produce slightly different

results by changing how the starting states in each increment are selected, how the time

increment is calculated, and what information is stored and ultimately returned by the

simulation algorithm. Additionally, although the iSSA may provide a smoothed simulation

trace, it is still a stochastic simulation algorithm and has the potential to return different

results from repeat executions, particularly when simulating oscillating circuits or circuits
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with bifurcating sample paths. Due to these considerations, the iSSA by itself may not

allow a researcher to obtain a full understanding of the behavior of a genetic circuit.

A method that can be used in conjunction with iSSA to improve the genetic circuit

design process is stochastic model checking. This method translates the infinite state space

of a genetic circuit into a finite state logical representation. This translation requires that

a user supply a level set for each interesting species in the model which is used to discretize

each species’ state space. The resulting state space is then translated into a CTMC using

both an operator site reduction and an amplified degradation rate abstraction to compute

the rates of moving from one state to the next. This CTMC can be analyzed using

stochastic model checking via steady state or transient Markov chain analysis. However,

in order to determine the likelihood of a certain event or condition occurring in the system,

CSL properties of the genetic circuit can be specified and checked while the stochastic

model checking is performed.

When utilized together in the proposed methodology, these methods can be used

to simulate a genetic circuit with the iSSA, to generate a CSL property that captures

the observed “typical” behavior or a rare behavior, and then to apply stochastic model

checking to the circuit yielding the likelihood of observing typical and rare behaviors as

shown in Figure 7.1. If the desired behavior is not observed with a large enough probability,

then the designer can alter elements of the circuit or parameters in the system to refine the

genetic circuit. This dissertation has applied the design space exploration methodology

to several examples of genetic oscillators and state holding gates allowing different design

and parameter choices to be efficiently analyzed and considered for each model.

7.2 Future Work

Despite the utility of the proposed design space exploration methodology, there are still

many ways that it can be improved. This section enumerates several possible areas of this

work that could use improvement and describes some potential approaches to undertaking

these research investigations.

7.2.1 Level Selection

Currently, in order to select good levels, a user performs a small number of simulation

runs to determine a range of values of interest. The user then applies this information

to select a number of levels in which to divide this range uniformly. Adding more levels

can greatly improve the accuracy of the algorithm, but it increases the size of the state
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Figure 7.1: An example work flow of using iSSA, logical abstraction, and stochastic
model checking to determine the likelihood of a system exhibiting its typical behavior.

space leading to longer analysis time. Conversely, fewer levels lead to less accurate results

but speed up analysis time. One way to improve the level selection process could be to

use a nonuniform choice of levels. For example, a user could leverage the iSSA to help by

showing a typical evolution of the interesting species over time allowing a user to select

more representative levels nonuniformly. However, automating the level selection process

may prove itself to be more fruitful as it may still be difficult for a user to know where the

levels should be placed. One idea for automating this process would be to select levels that

approximate the transition rate function by analyzing it to determine inflection points.

This way, more levels would be placed near species values that cause the evolution of a

species count to slow down requiring more resolution and fewer levels would be placed at

points where species values are changing rapidly and less resolution is needed.

7.2.2 Automatic Property Generation

Currently, the proposed methodology requires a user to analyze the resulting trace

produced by the iSSA by hand in order to generate a property that captures the circuits

typical behavior. A big improvement to this methodology would be the development of

a process that could automatically analyze a trace and produce a CSL property that

represents the behavior of the trace. Additionally, this method could possibly be tuned

to produce a property that captures behaviors not observed in the analyzed trace. This

way, the process may also be able to automatically produce a property that captures rare
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behavior or at least would be able to be used to compute the probability that the circuit

does not behave as expected.

7.2.3 Timed Events

Models of genetic circuits often allow for timed events where a species value can be

changed at a predetermined time in simulation. Indeed, some of the simulation analyses

presented in this dissertation utilize timed events to change the inputs of genetic circuits.

These events are useful in modeling systems where the environment changes due to the

introduction of some new chemical species. The CTMC that is generated from the

conversion process could be extended to include decision transitions for these environment

changes using a Markov decision process (MDP) [27]. The decision transitions in this

model would not have a rate associated with them because the environment is not governed

by the circuit and changes could come at anytime with unknown probabilities.

7.2.4 Partial Order Reduction

The efficiency of the stochastic model checking is also greatly impacted by the size

of the model’s state space. One way to deal with this problem is to apply partial order

reduction to the CTMC to try to eliminate uninteresting intermediate states in the state

graph. Previous work of applying partial order reduction to MDPs has proven useful;

however, extending it to CTMCs in general may also yield good results [38]. Partial order

reduction has the potential to cause the Markov analysis to perform its computations more

quickly but could lead to a less accurate calculation of the probability when some states

are collapsed that alter the rate that probability moves to absorbing states.

7.2.5 More Case Studies

This dissertation primarily focuses on stochastic analysis of synthetic genetic circuits,

particularly genetic oscillators and state holding circuits. However, this methodology

can be applied to any biological system that can be represented as a chemical reaction

network because at its core, it deals with species and chemical reactions. Other systems

that can lend themselves to this type of analysis include signal transduction pathways and

metabolic networks. Such case studies could provide more insight into the behavior of

these types of systems and serve designers in the construction of more robust systems.
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