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ABSTRACT

In order to increase performance, circuit designers are beginning to move away from
traditional, synchronous designs based on static logic. Recent design examples have
shown that significant performance gains are realized when aggressive circuit styles are
used. Circuit correctness in these aggressive circuit styles is highly timing dependent,
and in industry they are typically designed by hand. In order to automate the process of
designing and verifying timed circuits, algorithms to explore the reachable state space of
the circuit under the timing constraints are necessary.

This thesis presents a new specification method for timed circuits, timed event/level
(TEL) structures, and new algorithms for exploring a timed state space. The TEL struc-
ture specification allows the designer to specify behavior controlled by signal transitions,
which is best for representing sequencing, and behavior controlled by signal levels, which
is best for representing gate level circuits. This thesis also presents algorithms based on
partially ordered sets (POSETSs) that explores the timed state space of the TEL structure.
Results using the new specification method and algorithms show orders of magnitude
improvement over previous techniques in both speed and memory performance. The
algorithms have also been successfully applied to several circuit examples from the recently
published experimental Gigahertz processor developed at IBM. The speed and memory
performance improvements of the algorithm allow automatic synthesis and verification of

complex timed circuits, making them an attractive design alternative.
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The good Christian should beware of mathematicians, and all

The danger already exists

that the mathematicians have made a covenant with the devil
to darken the spirit and to confine man in the bonds of Hell.

- St. Augustine
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CHAPTER 1

INTRODUCTION

Time is a great teacher, but unfortunately it
kills all its pupils.
- Hector Berlioz

In order to increase performance, circuit designers are beginning to move away from
traditional, synchronous designs based on static logic. Recent designs, such as the Intel
RAPPID instruction length decoder described by Rotem in [60] and the IBM guTS
microprocessor described by Hofstee in [35] have shown that large performance gains
can be realized using aggressive circuit styles which make many timing assumptions.
The RAPPID chip is an asynchronous implementation of an instruction length decoder
for a Pentium II instruction set. It achieves a 300% performance improvement while
dissipating half the power of the synchronous implementation on the same process. The
gu'TS microprocessor is a synchronous implementation of a Power PC instruction set
running at 1 Gigaherhz on a 0.25p CMOS process available in 1997. Although both
designs achieve significant performance gains, they are experimental designs. Many
obstacles need to be overcome before the circuit styles developed in these designs can
be used in production. One of the main obstacles is the lack of design automation for
timed design styles.

Design of efficient timed circuits requires timing information to be used throughout the
synthesis and verification loop. The synthesis process begins with a specification of circuit
behavior that includes any timing assumptions the designer wishes to make. Although
the designer cannot make precise timing assumptions at the specification stage, he does
know something about the timing behavior of the circuit and timing relationships between
signal transitions can be bounded. In order to generate a circuit for this specification, the
synthesis tool then finds its reachable state space. Even if the specification contains no
timing information, this would be an exponential problem, and adding timing information

can complicate the problem further. However, if timing information is represented well



it can sometimes designate large portions of the state space as unreachable and therefore
reduce the time it takes to generate the reachable state space and synthesize the circuit.

Once the state space is found, it is used by an algorithm presented by Myers in [50] to
synthesize a gate level timed circuit. In this algorithm a function block for each output
signal, consisting of a C-element with a sum of products block for the set and another
for the reset. Each “product” block implements a single excitation region for a given
output signal. An excitation region for the output signal z is a maximally connected
set of states in which the signal is enabled to change to a given value. The algorithm
also determines set of excited states, which is the union of the excitation regions for a
given signal transition and an associated set of stable, or quiescent, states. For a rising
transition z+, this is the set of states where the signal z is stable high, and is similarly
defined for a falling transition. The algorithm then uses these sets of states to set up and
solve a covering problem whose constraints require that the resulting circuit is hazard-free.

Once the physical design for the gate level circuit produced by the synthesis algorithm
is complete, the circuit must formally verified. Timing assumptions in the specification are
made before there is any data available on the physical behavior of the circuit. Therefore,
these assumptions must be checked once the circuit is synthesized to make sure the timing
behavior of the implementation is consistent with the specification.

This thesis develops the algorithms necessary to use timing information in both synthe-
sis and verification. It first describes a specification method which is designed specifically
for circuits. It then presents an extension of the standard geometric region (or DBM)
method of timing analysis that is capable of analyzing these specifications. Although
this method works well for some specifications, it can suffer from state space explosion
when applied to highly concurrent examples. Therefore, we present a new algorithm,
called partially ordered set (POSET) timing which can reduce the state space size by
orders of magnitude. To further improve the speed of the algorithm, many optimizations
are made to deal with special cases that can eliminate many states. Finally, a formal
framework for verification using the algorithm is presented. The synthesis and verification
algorithms are implemented in the CAD tool ATACS and are applied to many examples,
including high performance synchronous circuits from a large industrial example. This
indicates that the algorithm not only produces significantly improved results when applied
to academic benchmarks, but can also be useful to industry in the design of future

generation, high-performance timed circuits.



1.1 Previous Work

The development of algorithms to synthesize and analyze asynchronous circuits has
been a very active area of research. However most of this work has been directed
toward untimed design styles. These styles, while robust, require a large amount of
hand optimization in order to produce competitive performance. There has also been
extensive work in the area of verification of timed systems. This work can be applied to
timed circuits, however, approaches specifically designed for circuits lead to better results

and automation.

1.1.1 Circuit Specification Approaches

The difficulty of circuit synthesis depends heavily on the type of specifications that are
allowed. Generally, very restrictive specification approaches make synthesis easier, but
are not useful for large, complex designs. Restrictive specification approaches may also
result in slower circuits, since designers cannot specify many of the optimizations they
would like to make. More flexible and expressive specification methods make synthesis
harder, but allow faster and more complex circuits to be synthesized. In order for an
asynchronous specification method to allow the synthesis of fast, complex designs, it
must have good support for concurrency and timing information, and it must be able to
specify behavior based on both signal transitions and signal levels.

There are currently two general approaches to specifying the behavior of asynchronous
circuits: language-based approaches and graph-based approaches. The two specification
methods each allow a somewhat different class of circuit to be specified and require
different methods for synthesis. Therefore, the specification method chosen can determine
to a large extent the quality of the resulting circuit. Synthesis methods for language-
based specifications directly translate a program into a circuit. One approach to this,
proposed by van Berkel in [68] and Brunvand in [15], is syntax directed translation where
language constructs are mapped directly to library blocks. In this method, signal levels
and concurrency are supported, but timing information cannot be specified. Also, the
circuits produced tend to be redundant and slow since optimizations are not seen when
simply mapping program constructs to circuit blocks. In another language-based method,
which is presented by Martin in [44], the specification program is translated to a circuit
using a series of semantic preserving transformations. This approach also supports levels,

but it requires a large amount of human intervention to be effective and has no support



for timing.

Graph-based specification methods require a specification that is lower level than
language based methods, but can make synthesis of efficient circuits easier. Many re-
searchers, including Chu [22], Meng [47], Lin [43], Vanbekbergen [69], and Lavagno [41]
use an interpreted Petri net or STG for specification. STGs are very good at expressing
concurrency. However, the traditional STG synthesis methods restrict the types of choice
allowed in the net, and they have no support for the specification of level information
or timing assumptions. There is an extension to STGs developed by Moon [49] that
does support levels, but it requires a restricted environment and synthesis algorithms
for this extended specification are not presented. Additionally, in [70] Vanbekbergen
presents extensions to STGs that support levels and timing in STGs. However, in this
work algorithms for synthesizing timed STGs with levels are not presented. Another
graph-based method, Kishinevsky’s change diagrams, is similar to STGs but removes some
of the restrictions by adding different types of arcs to the specification. These additional
arcs allow more disjunctive behavior to be specified. However, change diagrams have no
provision for timing information. Yun [74, 75|, Nowick [54], and Coates [25] specify
circuits using asynchronous state-machines, and perform synthesis using burst-mode
techniques. The burst-mode method allows one signal level to be specified on each arc
of the state machine. However, burst-mode synthesis requires the fundamental-mode
assumption which states that when a state change occurs, all of the changing outputs
are allowed to settle before any change in the input signals. This can sometimes require
adding delay between the circuit and its environment so that the inputs to the circuit
do not change before the outputs settle. Also, state-machine based specification is
not well-suited to expressing concurrency since state machines are inherently sequential.
Finally, state machines do not express causality between output and input events directly,
making it difficult to utilize timing assumptions to optimize the circuit.

The specification method used in the version of the ATACS tool described by Myers
in [50] is a combination of the graph-based and language-based approaches. While the tool
accepts language-based specifications as input, it does not directly use them for synthesis.
Instead, ATACS compiles the input program into a graph, which is then used for synthesis.
This version of ATACS uses timed event-rule(ER) structures, a variant of Winskel’s event
structures [72] with timing, for synthesis. Since timed ER structures separate causality

from choice, they are both easier to generate from high-level descriptions, and easier to



analyze. Unlike all of the previously described specification methods, timed ER structures
allow the use of explicit timing assumptions in synthesis. However, like STGs, timed ER
structures have no support for levels in the specification. This can be quite limiting when
trying to express things like true OR causality and many language constructs, such as
conditional loops. This thesis presents a new specification method that adds levels to ER

structures.

1.1.2 Time Separation of Events Algorithms

If a specification with timing information is used, a timing analysis step is necessary to
find the timed state space. A number of timing analysis algorithms have been developed,
and each is optimized to solve a different class of problem. A time separation of events
algorithm is not designed explicitly for state space exploration. Its result is a minimum
and maximum separation between two specified events. It can be used for state space
exploration indirectly by calling it repeatedly during a state space exploration algorithm
to determine which events are allowed to occur. However, none of the existing time sepa-
ration of events algorithms are suitable for timed state space exploration of a sufficiently
expressive specification.

In [46], Dill presents an algorithm for finding the minimum and maximum time
separations between events in acyclic graphs. It is O(n?) in the number of events in the
graph. This algorithm can be used for timed state space exploration if the specification
graph is acyclic. However, most circuit specifications are cyclic.

In [51], Myers presents a polynomial time algorithm to compute an estimate of the
minimum and maximum time differences between all events in a cyclic, choice-free graph.
The algorithm works by unfolding the cyclic graph into an infinite acyclic graph and
examining two finite acyclic subgraphs of the infinite graph to determine bounds on time
differences between events. The estimate is usually sufficient for timed state space analysis
and can be improved by analyzing larger subgraphs. The algorithm is O(v - €¢) where v
is the number of vertices and e is the number of edges in the subgraph analyzed. The
choice-free restriction is too limiting however, since most circuits need a choice semantics
to represent non-deterministic behavior in the environment.

CTSE, presented by Hulgaard in [37, 36], provides a way to find a single exact time
difference (separation) between two events in a cyclic graph including limited types of
choice. This type of algorithm can be used for state space exploration by running the

algorithm to determine the minimum and maximum time separation between every pair



of events in the specification. However, it has two drawbacks. The first is that the
algorithm in [37, 36] is not able to analyze specifications with arbitrary choice and level
based behavior. This drawback could be eliminated by the development of a more general
algorithm. The second drawback is more fundamental. A time separation of events
algorithm provides the minimum or maximum time separation between two events that
is possible over em all possible executions of the specification. A state space exploration
algorithm needs to know the minimum and maximum time separation between events that
can lead to a given boolean state. In many cases, certain boolean states are only reachable
when the time operation between two events is less than its overall maximum or greater
than its overall minimum. Since time separation of events algorithms lack state dependent

timing information, a state space algorithm using this approach is approximate.

1.1.3 Timed State Space Exploration Algorithms

The first dividing factor between time state space exploration algorithms is how they
represent time. The representation of the timing information has a huge impact on the
growth of the state space. Timing behavior can either be modeled continuously (i.e.,
dense-time), where the timers in the system can take on any value between their lower
and upper bounds, or discretely, where timers can only take on values that are multiples
of a discretization constant. Discrete time has the advantage that the timing analysis
technique is simpler and implicit techniques can be easily applied to improve performance
as shown by Burch in [18] and Bozga in [13]. The worst case complexity of this approach
is O(|S|(k +1)") where S is the number of untimed states, n is the maximum number of
places in the Petri net that can be marked, and k& is the maximum value of any timing
requirement. This worst case complexity is often approached in actual circuits and the
state space explodes if the delay ranges are large and the discretization constant is set
small enough to ensure exact exploration of the state space. For example a delay range
of 117 to 269 has 153 discrete states if the discretization constant is set to one. Although
the discretization constant can be larger than one if there is a larger number that divides
all of the numbers used for delay ranges, this does not happen very often when delay
numbers from actual circuit data are used.

Continuous time techniques eliminate the need for a discretization constant by break-
ing the infinite continuous timed state space into equivalence classes. All timing as-

signments within an equivalence class lead to the same behavior and do not need to



be explored separately. In order to reduce the size of the state space, the size of the
equivalence classes should be as large as possible. In Alur’s unit-cube (or region) approach
[1], timed states with the same integral clock values and a particular linear ordering of
the fractional values of the clocks are considered equivalent. Although this approach
eliminates the need to discretize time its complexity of O(\S\%(%)Wl(l/’“)) is much
worse than discrete time and the state space using this method typically explodes if the
delay ranges are large.

Dill [28], Berthomieu [12], Lewis [42], and Alur [3] present another approach to
continuous time where the equivalence classes are represented as convex geometric regions
(or zones). Geometric regions can be represented by sets of linear inequalities (also
known as difference bound matrices or DBMs). The worst case complexity of this timing
representation is worse than that of unit cube. However, the worst case complexity occurs
less often when verifying real circuits. The larger equivalence classes generated by the
geometric region method can often result in smaller state spaces than those generated by
the unit-cube approach. The number of geometric regions can explode with geometric
approaches since each untimed state has at least one geometric region associated with
it for every firing sequence that can result in that state. In highly concurrent systems
where many interleavings are possible, the number of geometric regions per untimed state

is huge. In order for it to be effective, techniques are needed to reduce state space size.

1.1.4 State Space Reduction

A number of techniques have been proposed to deal with state explosion. Valmari [67],
Godefroid [31] and McMillan [45] have proposed approaches that use stubborn sets
[67], partial orders [31], or unfolding [45]. These techniques reduce the number of
states explored by considering only a subset of the possible interleavings between events.
They are targeted specifically at verification, and they allow the removal of interleavings
since some interleavings are not relevant to the property that is being verified. These
approaches have been successful, but they only deal with untimed verification.

The state space of timed systems is even larger than the state space of untimed
systems and has been more difficult to reduce. Yoneda [73], Semenov [61], Verlind [71],
and Bengtsson [11] have attacked this problem by reducing the number of interleav-
ings explored using the partial order techniques developed for untimed systems. These

algorithms compute a set of event firings that must be interleaved to ensure that the



desired property is checked. Any event firings not in the set are not interleaved. This
reduces the state space significantly for highly concurrent specifications. While reducing
the number of interleavings is useful, in [73, 61] one region is still required for every
firing sequence explored to reach a state. If most interleavings need to be explored, these
techniques could still result in state explosion. The algorithms from [71, 11] do address
the problem of generating a unique region for every firing sequence. In [71] an algorithm
which operates on timed Petri nets is proposed where transitions are given negative firing
times in order to build regions that do not depend on the firing order. The work in [11]
takes a related approach where the clocks associated with states in a timed automata are
allowed to advance at different rates. However, since these techniques do not find the
entire state space, they cannot be applied to synthesis. Logic synthesis algorithms for
timed asynchronous circuits require that all of the boolean states allowed by the state
space are found in order to create a correct logic implementation [52]. If the synthesis
algorithm is given an incomplete state space, it cannot be guaranteed to generate logic
that correctly responds to all inputs to the circuit.

Orbits, presented by Myers and Rokicki in [58, 59, 53], takes a somewhat different
approach. It reduces the number of regions per untimed state by using partially ordered
sets (or POSETSs) of events rather than linear sequences to construct the geometric
regions. Instead, the algorithm generates only one geometric region for any set of firing
sequences that differ only in the firing order of concurrent events. This algorithm is
shown in [59] to result in very few geometric regions per untimed state. This algorithm
differs from the partial order approaches in that is still finds a complete state space
and improvement achieved by Orbits is not dependent on the verification property.
However, it is limited to specifications where the firing time of an event can only be
controlled by a single predecessor event (known as the single behavioral place (or rule)
restriction). In some cases, the single behavioral rule restriction can be worked around
through transformations on the initial graphs [50], however the transformations cause a
large increase in the complexity of the graphs which need to be analyzed. This thesis

extends the algorithms presented in [58, 53] to work with much more flexible specifications.

1.2 Contributions

This thesis makes three main contributions to the area of synthesis and verification of

timed circuits. The first contribution is in the area of specification. This thesis introduces



timed event/level(TEL) structures, an extension to the timed ER structures developed by
Myers [50], which allows the general use of levels in the specification of a timed circuit.
TEL structures allow information about levels to be included in the ER structure in the
form of an arbitrary boolean expression. This provides a number of advantages over
other specification methods. Since circuit behavior at its lowest level is based on the
sampling of boolean values from wires, specifications with the ability to model this are
much more compact than those based purely on signal events. Although purely event
based specifications can model level-based circuit behavior, they are much larger, and thus
they are more time consuming to analyze than level based specifications. Additionally,
this direct correspondence facilitates translation of a circuit into a TEL structure both
by compilation of a VHDL specification and by directly translating schematics by hand.

The next contribution is an algorithm to analyze the TEL structures efficiently. As
mentioned earlier, this algorithm is an extension of the one introduced in by Rokicki
in [68]. Although the algorithm does not improve the worst case complexity of the
geometric approach, it reduces the size of the state space for most circuit specifications
by eliminating the requirement that a new state must be generated by every possible
interleaving of event firings. The algorithm does this by creating timed states based on
a partial order created from the execution sequence being explored, instead of the total
order of the sequence. It is therefore referred to as the partially ordered set, or POSET
algorithm. The algorithm introduced in [58] is limited to specifications that meet the
single behavioral rule requirement and have no level expressions. This thesis extends
the algorithm to work on TEL structures and presents formal proofs for the correctness
of the algorithm which are lacking in [58]. It also discusses a number of optimizations,
including the use of implicit representations such as (MTBDDs) to further reduce the
memory requirements of the state space exploration.

The final contribution is in the area of verification of high-performance timed syn-
chronous and asynchronous circuits. Due to the synchronous abstraction, timing verifica-
tion for synchronous circuits is seen as a much simpler problem than that of asynchronous
circuits. However, in order to get the highest performance possible, synchronous designers
are creating ever more aggressive circuit styles. These styles typically break the existing
timing methodology and it takes a long time before the synchronous timing tools catch up,
by which time designers have begun to work with an even more aggressively timed circuit

style. The result of this lag between circuit design and CAD support is that aggressive
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circuit styles are not used in production until long after they have been developed. This
thesis shows how timing verification approaches developed for asynchronous circuits can
also be used to verify timed synchronous circuits. Although the asynchronous algorithms
have much greater complexity than the algorithms used for synchronous circuits, they
have the advantage that they can be applied to any type of circuit style without any
adaptations. This may help reduce the lag between the development of experimental

circuit styles and their actual use.

1.3 Thesis Overview
The thesis is organized as follows: Chapter 2 introduces TEL structures. Chapter
3 describes the changes made to the basic geometric algorithm to deal with multiple
behavioral rules and level expressions. Chapters 4 and 5 describe the POSET algorithm
and its proof of correctness. Chapters 6 and 7 describe the optimizations that have been
made to the algorithm to increase speed and memory performance. Chapter 8 discusses
how verification properties are specified and checked. Chapter 9 presents results, and

finally, Chapter 10 discusses conclusions and future work.



CHAPTER 2

TIMED EVENT/LEVEL STRUCTURES

The mere formulation of a problem 1is far
more essential than its solution, which may
be merely a matter of mathematical or exper-
wmental skills.

- Albert Finstein

As discussed in the previous chapter, most existing asynchronous CAD tools have
one of two major weaknesses: they do not support explicit timing and they are purely
event based. Timing assumptions can often make the difference between an asynchronous
circuit that is faster than the corresponding synchronous circuit and one that is slower.
Timing assumptions can be made manually by the designer, but this is very error prone.
The lack of the ability to specify signal levels limits the usefulness of the tool and makes it
difficult to specify any behavior where sampling the value of a signal is necessary. Simple
concepts, such as a loop on a condition, often have complex or imprecise specifications
if level information cannot be included. This makes asynchronous design tools harder to
use and less appealing to industrial designers.

This chapter describes timed event/level (TEL) structures, which we first present in [8].
TEL structures are an extension to timed ER structures which allow the general use of
levels in the specification of a timed circuit. Information about levels is included in the
ER structure in the form of an arbitrary boolean expression. This makes it possible
to extend the specification languages accepted by ATACS to allow the specification of
conditional loops and true OR causality, as well as all other constructs that require waits
on boolean expressions. TEL structures can be analyzed using a modified version of the
geometric timing analysis method we presented in [9]. The faster POSET algorithm,
which we presented in [7] is also capable of analyzing TEL structures without adding
significant overhead. Therefore, TEL structures facilitate more general specifications

without decreasing synthesis performance.
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2.1 Motivating Example

One of the important specification constructs that is much easier to express with
levels is a loop on a condition. Any construct that requires sampling the value of a
signal and then making a decision based on the result, is very difficult to specify in
purely event-based semantics. One specification where a conditional loop is required is
the sbuf-send-pk2 controller from the HP Post Office [25] benchmark suite. This example
is cited by Yun in [75] as a motivation for the level extension to burst-mode circuits and
had to be modified to be expressed as an STG for the SIS benchmark suite. It is also an

interesting example of the expressiveness of TEL structures.
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Figure 2.1. Specifications for sbuf-send-pk2 controller.

The purpose of this controller, shown as an extended burst mode specification in
Figure 2.1(a), is to manage the transfer of packets between a sender and a receiver. First,
the receiver asserts req, which requests a line to be sent from the sender. Then, the sender
sends the line and raises sendline. When the receiver reads the line, it acknowledges the
sender by raising ackline. Then the sender lowers sendline, and the receiver responds
by lowering ackline. This protocol continues until the receiver chooses to terminate it.
To terminate the packet transfer, the receiver asserts done sometime after the falling
transition of sendline but before it raises ackline again. When the sender detects that

done has risen, it lowers sendline and also raises ack, indicating it has detected that
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Figure 2.2. Complete Petri net for sbuf-send-pk2 controller.

the packet transfer is over. The receiver then lowers req, ackline, and done in parallel
and the sender, in response to this, lowers ack. This is a reasonably simple specification
since the extended burst-mode machine can sample the level of the signal done when
choosing whether to transition to state 2 or state 3 from state 1. It also appears simple
since in burst-mode the environment is implicit and does not need to be expressed in the
specification. Although this simplifies the specification, it makes it impossible to make
detailed timing assumptions about the behavior of the environment. Figure 2.1(b) shows
a free choice STG that is used to specify this circuit in the SIS benchmark suite. It is not
very complex, but it is not complete. This STG only allows the transition done+ to occur
between the transitions sendline- and ack+. In the description of the circuit, however,
done+ can occur any time between a falling transition of sendline and a rising transition
of ackline. It is necessary to restrict the behavior of done in order to express this circuit
as a free choice STG. The Petri net that specifies the full behavior of the circuit, shown in
Figure 2.2 is quite complex, and it does not have the free-choice property. This net was
derived from a state graph of the circuit using Petrify [26] and would be very difficult
to generate correctly either by hand or by compilation from a higher level language.

Figure 2.3 shows the TEL structure that represents the circuit for sbuf-send-pk2 and
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[25]
<~done & ackline>

[2,5]
<~ackline>

Conflicts:

ack+ # sendline-/1
sendline-/2 # sendline-/1
ack- # sendline-/1

Figure 2.3. TEL structure for sbuf-send-pk2 controller circuit.

Conflicts:

ackline-/3 # done+
ackline-/3 # ackline-/1
reg+ # ackline-/3

Figure 2.4. TEL structure for sbuf-send-pk2 controller environment.

Figure 2.4 shows the TEL structure for its environment. These TEL structures are
produced by compilation of the handshaking level description of the circuit shown in
Figure 2.5. The semantics of a handshaking expansion are described formally by Martin
in [44]. They are described here informally. Semicolons indicate sequencing. Signals

in brackets ([a]) indicate a wait on a signal. The program cannot progress beyond a
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process circuit
x[[req]; sendline+;[—done A ackline — sendline—; [-ackline]; sendline+; x

| done A ackline — (ack+ || sendline—); [-req A —ackline]; ack—;]]
endprocess

process environment
x[req+; [sendline]; ackline+;
[ —sendline — (done+ | ackline—); [sendline]; ackline + [—sendline A ack];
(req— || ackline— || done—); [—ack]
| ~sendline — ackline—; [sendline]; ackline+; *|]
endprocess

Figure 2.5. Handshaking expansion for sbuf-send-pk2 controller circuit.

wait until the expression it contains is satisfied. Waits can also be placed in guarded
commands, for example, [a — b+ | ¢ — d+]. This guarded command chooses between
executing b+ and d+ depending on whether a or c is true. The handshaking semantics
defined in [44] require that guards on guarded commands must be mutually exclusive. The
* operator indicates a loop. If it used at the end of a guarded command it indicates that
control returns to the beginning of the guarded command. If it is used at the beginning
of a process, it indicates that the process repeats forever.

The first thing to notice about the TEL structure which represents the handshaking
expansion is that each process in the specification is represented with a separate TEL
structure. In this case, there is one TEL structure for the circuit, and a second for
its environment. This makes TEL structures both easier to compile to and easier to
read. When this particular specification is broken up into processes, it is clear that the
circuit itself is fairly simple, while the environment is more complex. TEL structures
are defined formally in the next section, however, intuitively they can be thought of as
a graphical representation of timed handshaking expansions. Each signal transition in a
process corresponds to an event in the TEL structure. In the figure, events are shown as
boxes connected by arrows. If the same transition occurs multiple times in a handshaking
expansion it may occur multiple times in the TEL structure, however an optimizing step
can often remove multiple occurrences of events. The arrows that connect events are
referred to as rules, and are annotated with both a boolean expression and a lower and
upper timing bound. Rules represent ordering relationships between events in a process.
When two events occur sequentially in the handshaking expansion, a rule connects them.

If there is a wait on a condition between these two events, the rule is annotated with
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that wait, indicating that the second event cannot occur until both the first event has
occurred and the condition has been satisfied. The timing bound, which distinguishes
TEL structures from the previously described specification methods, allows the designer
to specify a range on the delay between the firings of events in both the circuit and its
environment.

The behavior of TEL structures can be illustrated by examining how the structure for
the sbuf-send-pk2 makes a choice based on the value of signal done. If done is low when
sampled, the handshaking indicates that only the event sendline— can fire, otherwise
events sendline— and ack+ occur in parallel. This choice is represented in the TEL
structure by the conflict relation (defined formally in the next section). If two events e;
and es conflict, indicated by ej#es, either e; or ey can fire, but not both in the same
iteration. In this circuit, there are two sendline— events, sendline—/1 and sendline—/2,
both of which cause the signal sendline to fall. However, the conflict relation states
that only one of them can occur. Additionally, ack+ conflicts with sendline—/1. Both
the rules sendline+ — ack+ and sendline+ — sendline—/2 are annotated with the
expression (done A ackline), indicating that these rules cannot fire unless both done and
ackline are high. This corresponds to the condition done A ackline in the handshaking
expansion. The rule sendline+ — sendline—/1 is annotated with the expression (~doneA
ackline), corresponding to the other choice in the handshaking expansion. If done is low
when ackline rises, event sendline—/1 fires. If done is high when sampled, the TEL
structure allows both ack+ and sendline—/2 to occur in parallel, just as specified in
the handshaking expansion. This example shows how choices based on signal levels in
handshaking expansions can be directly represented by TEL structures.

TEL structures can be used to represent specifications that are quite difficult to express
with purely event based specification methods. Although they are no more expressive
than general Petri nets, they are more expressive than the free choice Petri nets which are
required by most STG synthesis methods. Since they allow processes to be separated, they
significantly simplify compilation, increase readability, and make it possible to compile
language constructs that involve levels. They also allow the designer to make timing
assumptions in both the circuit and the environment which are not possible with the

other specification methods.
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2.2 The semantics of TEL structures
Event structures were introduced by Winskel [72] and timing has been added to them in
several ways. Subrahmanyam added timing to event structures using temporal assertions
[63]. Burns introduced timing in a deterministic version, the event-rule system, in which
causality is represented using a set of rules, and a single delay value is associated with
each rule [20]. Timed ER structures, introduced by Myers in [50], allow a delay range
to be associated with each rule. TEL structures, described formally below, extend timed

ER structures by allowing a boolean expression to be associated with each rule.

2.2.1 Timed event/level structures
TEL structures are based on timed ER structures, which are fundamentally acyclic.
Cyclic specifications are represented by infinite timed ER structures, and state space
exploration is done by dynamically creating the infinite unrolling of the specification
until no new boolean states are possible. This type of acyclic semantics can also be used
for TEL structures, but in order to make them more similar to the widely accepted
specification methods such as Petri nets, TEL structures are defined here as cyclic

structures.

Definition 2.2.1 A TEL structure is a 6-tuple T = (N, sg, A, E, R, #) where:
1. N is the set of signals;

so = {0,1}" is the initial state;

ACN x{+,—} U § is the set of actions;

ECAx (N ={0,1,2..}) is the set of events;

RCEXExN x (NU{oc}) x (b:{0,1}¥ — {0,1}) is the set of rules;

Ry is the set of initially marked rules;

X S A e

# C E x E is the conflict relation.

The signal set, N, contains the wires in the circuit specification. The state sy contains the
initial value of each signal in N. The action set, A, contains for each signal z in N, a rising
transition, z+, and a falling transition, z—, along with the sequencing event $, which is
used to indicate an action that does not cause a signal transition. The event set, E,
contains actions paired with instance indices (i.e., (a,i)), which are used to distinguish
multiple instances of a given signal transition within the specification. For example,

there may be two possible situations in which a signal z can rise in a specification. These
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rising actions on z are distinguished by having two events, (z+,1) and (z+,2). Pairing
actions with instance indices allows an arbitrary number of events to be created from
each action, including the sequencing action, $. Sequencing events are often used to
express nondeterminism where a signal may or may not transition. Although, formally
the definition requires that all sequencing events be of the form ($,4) where i is an integer,
sequencing events of the form $s where s is a string are used in this thesis in order to
make the purpose of the sequencing event more clear.

Rules represent causality between events. Each rule, r, is of the form (e, f,[,u,b)

where:

1. e = enabling event,
2. f = enabled event,
3. (l,u) = bounded timing constraint, and

4. b = a boolean function over the signals in N.

A rule is enabled if its enabling event has occurred and its boolean function is true in
the current state. There are two possible semantics concerning the enabling of a rule.
In one semantics, referred to as non-disabling semantics, once a rule becomes enabled,
it cannot lose its enabling due to a change in the state. In the other semantics, referred
to as disabling semantics, a rule can become enabled and then lose its enabling. This
can occur when another event fires, resulting in a state where the boolean function is
no longer true. A single specification can include rules with both types of semantics.
Non-disabling semantics are typically used to specify environment behavior and disabling
semantics are typically used to specify logic gates. For the purposes of verification, the
disabling of a boolean expression on a disabling rule is assumed to correspond to a failure,
since it corresponds to a glitch on the input to a gate. A rule is satisfied if it has been
at least | time units since it was enabled and ezpired if it has been at least v time units
since it was enabled. Excluding conflicts, an event cannot occur until every rule enabling
it is satisfied, and it must occur before every rule enabling it has expired.

The conflict relation, #, is used to model disjunctive behavior and choice. When two
events e and ¢ are in conflict (denoted e # €'), this specifies that either e can occur or ¢’
can occur, but not both. Taking the conflict relation into account, if two rules have the
same enabled event and conflicting enabling events, then only one of the two mutually

exclusive enabling events needs to occur to cause the enabled event. In the general case,
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Conflicts:
b+ #c+
at+
<i%<\2,5>
7+
b+ c* <6,10> <2,5>
[e fld] [~x & ~y]d [x|yld
<3,6> <6,10>
a
Z-

(a) (b)

Figure 2.6. Examples of TEL structures.

an event is enabled when a maximal, non-conflicting set of its enabling events has fired.
The ability for an event to fire when only a subset of its enabling events have fired models
a form of disjunctive causality. Events that are enabled by multiple conflicting events are
similar to merge places in Petri nets. Choice is modeled when two rules have the same
enabling event and conflicting enabled events. In this case, only one of the enabled events
can occur. An event e that is the enabling event of multiple rules that have conflicting
enabled events is similar to a choice place in a Petri net. Every pairwise conflict in the
TEL structure must be specified, but this does not cause a problem for the user since TEL

structures are typically generated from a higher level input language, such as VHDL [76].

2.2.2 Examples

Figure 2.6(a) shows an example of a TEL structure with non-disabling semantics. It
has one conflict, b + # ¢+, which indicates that either the event b+ or the event ¢+ can
occur after a firing of a+, but not both. The conflict also implies that only one of the
signals b+ or c+ is necessary to fire a—. The rules a+ — b+, and a+ — c+ do not
have level annotations. These rules function in exactly the same way as rules in standard
ER structures and are enabled as soon as their enabling event, a+, fires. Since they
have a bounded timing constraint of (2,5), each of them becomes satisfied 2 time units
after a+ fires and expired 5 time units after a+ fires. The rule b+ — a— has a level
annotation, e, and does not become enabled until both b+ has fired and the signal e is

true. It becomes satisfied 3 time units after it becomes enabled and expired 6 time units
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clkl ck2

Figure 2.7. A delayed-reset domino gate.

after it becomes enabled. The rule ¢+ — a— also has a level annotation, (f V g), and
becomes enabled after ¢+ has fired and fV g is true. Since the semantics is non-disabling,
once the expression has become true, the rule becomes satisfied after 6 time units, even
if the expression later becomes false. Figure 2.6(b) shows an or gate represented as a
TEL structure with disabling semantics, indicated by the “d” placed next to each level
expression. The rule z— — z+ becomes enabled when z— has fired and z V y is true. It
becomes satisfied 2 time units later. If both z and y become false before z+ fires, the
rule is disabled, and it is not satisfied again until 2 time units after z V y becomes true
again.

Figure 2.7 and 2.8 are used to illustrate how TEL structures are used to model circuits.
Figure 2.7 shows a delayed-reset domino gate. The gate computes the function (a Vb) Ac
in two stages. The first stage computes a V b while clk1l is high, and the next stage
computes outl A ¢ while clk2 is high. Both gates precharge while their respective clocks
are low. Since neither n-stack has a “foot” transistor to ensure that the path to ground
is turned off during the precharge phase, the timing of the circuit must guarantee that
all the inputs to the gate are low by the time the local clock for each stage falls.

The TEL structure representation for the domino gate and its environment is shown in
Figure 2.8. It includes one rising and one falling event for each signal. The specification
indicates that there is a global clock Gelk which rises 500 time units after it falls and falls
500 time units after it rises. The inputs to the gate, a, b, and ¢, nondeterministically rise
some time after the clock rises. The nondeterminism is modeled using the conflict relation

and sequencing events. Each rising event on an input conflicts with a corresponding
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Figure 2.8. TEL structure for the gate in Fig. 2.7 and its environment.

sequencing event. Since the rising event and the sequencing event conflict, only one of
them can occur. If the rising event for a signal fires, the signal rises in that clock cycle, if
the sequencing event fires, it does not. A falling transition on the global clock is followed
by falling transitions on all of the inputs, if they have risen. Again sequencing events and
conflicts are used to deal with the nondeterminism. If an input signal rises on the rising
edge of Gclk then a falling event for that signal must occur when Gelk falls. Otherwise,
a conflicting sequencing event fires, preventing the falling event on the input signal from
becoming enabled as soon as that signal rises again. The Gclk signal also controls the
firing time of the two local clocks, ¢lk1 and clk2. The local clock clk1 rises between 10
and 30 time units after Gclk rises and falls 30 time units after Gclk falls. The other local
clock, clk2 and the two gate outputs, outl and out2 are specified in a similar fashion.
Although the TEL structure is readable for a small circuit, it would be difficult to
specify a large macro at this level. ATACS provides support for two higher level input

languages, VHDL and the timed handshaking expansions described earlier. Designers



library ieee;
use ieee.std_logic_1164.all;
use work.nondeterminism.all;
entity levell is
port (

clkl : in  std_logic;

a : in  std_logic;

b : in std_logic;

outl : out std_logic);
end levell;
architecture BEHAVIORAL of levell is
signal outl_NEW : std_logic;
begin
outl <= outl_NEW;

outl_NEW <= ’1’ after delay(50, 70) when a=

17 or b = 1’ else

’0’ after delay(10, 30) when clkl = ’0’ else

outl1_NEW;

end BEHAVIORAL;
entity level2 is
port(

clk2 : in  std_logic;

outl : in  std_logic;

¢ : in  std_logic;

out2 : out std_logic);
end level2;
architecture BEHAVIORAL of level2 is
signal out2_NEW : std_logic;
begin
out2 <= out2_NEW;

out2_NEW <= ’1’ after delay(10, 30) when

c = ’1’and outl = ’1’ else

’0’ after delay(20, 50) when clk2 = ’0’ else

req_NEW;
end BEHAVIORAL;

Figure 2.9. VHDL description of the domino gate

22
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can specify circuits in these languages, and they are compiled into TEL structures using
techniques described by Zheng and Myers in [76, 50]. Figure 2.9 shows the VHDL
description of the two levels of logic used in the domino gate. The additional VHDL
needed to connect up these gates is not shown here since it is simply structural VHDL
to connect the signals. Since standard VHDL allows only deterministic delays, and
timing verification requires bounded delays, the VHDL specification includes a package
“nondeterminism” that allows for the use of the delay function. Calls to the delay
function compile to a delay range in a TEL structure and are simulated in a VHDL
simulator by making random delay choices within the delay range. Since these gates are
state-holding, they cannot be specified using simple assignments in VHDL. Instead each
signal has a rise condition and a fall condition, which can be compiled directly to rules
in TEL structures. Using this interface, the designer can work in a familiar language

without having to figure out how to represent circuits directly in TEL structures.

2.2.3 Timed Firing Sequences

The behavior specified by a TEL structure is defined with three types of operations:
firing of rules, firing of events, and advancement of time. A time valued clock ¢; is
associated with each enabled rule r;. A rule can fire when the clock meets the lower
bound on the rule, and must fire when the clock reaches the upper bound on the rule.
Using these semantics, the age of a clock never exceeds the upper bound of its associated
rule. The firing of a rule may not immediately result in the firing of an event. An event
fires when a sufficient set of the rules that enable it have fired. If all of the rules enabling
an event ¢ have non-conflicting enabling events, then e’s sufficient set is all of the rules
that enable it. If some of the rules enabling e have conflicting enabling events then e has a
number of different sufficient sets. For a set of rules, Ry, to be sufficient to fire e, all rules
that enable e and are not in R, must have enabling events that conflict with the enabling
event of some rule in R;. Events fire simultaneously with the last rule firing that creates
a sufficient set of fired rules. Time is advanced using a function maz_advance, which
returns the maximum amount of time that can pass before a rule must fire or exceed
its upper bound. These semantics define a set of firing sequences that contain both rule
and event firings, where event firings are placed in the sequence immediately following
the firing of its final enabling rule. In order for the analysis algorithm presented here to

succeed in finding the state space of a TEL structure, it must be one-safe. In a one-safe
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TEL structure, when the enabling event of a rule fires, it cannot fire again until either
the enabled event of the rule fires, or an event that conflicts with its enabled event fires.
This property is similar to the one-safe property on Petri nets, which prevents places
from containing multiple tokens.

The set of behaviors of a TEL structure is defined by a set of sequences ¥ € ((R*)(E*))*
where each firing (rule or event) is numbered sequentially. In order to simplify the
notation, shorthand operations for dealing with firing sequences need to be defined. The
function L is used to map an instance of a rule or event in the firing sequence back to
the corresponding rule or event in the original specification, and the € operator is used
to specify whether a type of firing occurs in the sequence. Also, the functions [ and u
are used to return the lower and upper bound on a rule. Finally, it is useful to define a
choice_set for each rule r = (e, f, [, u,b). The choice set of r contains all events which are

enabled by e and conflict with f:

Definition 2.2.2 The choice set of a rule r = (e, f,1,u,b) is defined as follows:
choice_set (r) ={f' e E | Ir' = (e, f,I', ', V') e R N f'#[}

When the event f fires, all of the events in the choice set of r require another firing of e
before they have a chance to fire. Events that are not in the choice set of r do not require
another firing of e in order to fire.

The state space of a TEL structure is found by exploring firing sequences of events
and rules. The boolean state which is used to evaluate the boolean expressions associated
with rules is defined by the rule firing sequence being explored, o. The state resulting
from a rule firing sequence, ¢(o) is simply the state that results when the firing sequence
is executed starting from the initial state sgp. We can now formally define what it means

for a rule r to be enabled by a firing sequence o.

Definition 2.2.3 A rule r = (e, f,l,u,b) € enabled(oy. ) if one of the following condi-

tions s true:

1. (re Ry) A (-3oj €09y : L(oj) =7) A(—=Toj € 0. : L(0;) € choice_set(r)) A
(b(¢(00..n)) V (non-disabling(r) A Jo; € og.p : b(¢(00.5)))

2. do; € 00, : ((L(oi) =€) AN(—30j € 0441.n : L(oj) =7) A
(—Jok € 0it1.n: L(ok) € choice_set(r)) A
(b(¢(00..n)) V (non-disabling(r) A oy € giv1.n : b(P(00.1)))))
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The first condition in the definition deals with rules that are initially marked. In order
to satisfy the first condition, a rule must be initially marked (i.e. r € Ry), and there must
not be any other firing of the rule in the firing sequence (i.e. =30, € 09, : L(oj) = 7).
There also must not be any other event firings in the sequence that would cause this
rule to loose its chance to fire due to conflict (i.e. ~3o; € 0y, : L(oj) € choice_set(r)).
Finally, the boolean expression on the rule must either be satisfied by the current firing
sequence, or be satisfied at some point in the current firing sequence for a non-disabling
rule (i.e. (b(¢(00.m)) V (non-disabling(r) A3 : o5 € o : b(¢(00.5))). This distinction
is made since non-disabling rules only require that the boolean expression become true
at some point before the rule fires. The second condition deals with all rule enablings
other than the first firings of initially marked rules. In order for the second condition
to hold, the firing sequence must contain a firing of the enabling event of the rule (i.e.
Jdo; € 0g. ¢ L(o;) = €) and it must not contain a firing of the rule that occurs after the
firing of the enabling event (i.e. —3o; € 041, : L(0;) = r). The firing sequence also
must not contain a firing of an event in the choice set of r that occurs after the firing of
e (i.e. =3og € 0iy1.n : L(ok) € choiceset(r)). Finally the boolean expression on the rule
must either be satisfied by the current firing sequence or, if the rule is non-disabling, it
must have been satisfied at some point in the sequence after the firing of the enabling
event (i.e. b(¢(0o.n)) V (non-disabling(r) A 3oy € o111, : b(d(00..1))))-

When a sufficient set of rules has fired in the sequence, an event becomes enabled to
fire. When an event fires, it “uses” the rule firings. Therefore, we need to define when a

rule firing can be used to fire an event.

Definition 2.2.4 The usable relation on a firing o; : L(o;) = (e, f,l,u,b) and firing
sequence og_p, s defined as follows:

usable(o;,00.n) & —30j € 0410 1 (L(oj) = )V (L(oj) € choice_set(L(o;))).

This definition means that a rule firing is usable until its enabled event fires or an
event in its choice set fires. A rule r = (e, f,l,u,b) remains usable when an event, f’,
that conflicts with f fires, if f' and f do not share e as an enabling event. For example,
consider the TEL structure in Figure 2.10, and assume that a+ and d+ have fired. A
firing of a4+ — ¢+ is made unusable by the firing of event b+ since b+ is in the choice
set of a+ — c+. However, the firing of b+ does not make a firing of d+ — c+ unusable.

This distinction is made since another firing of a+ is necessary before ¢+ can fire, but
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Conflicts at d+

b+ #c+

b+ c+

Figure 2.10. Conflict behavior.

another firing of d+ is not necessary before c+ can fire.

Events fire when there is a sufficient set of usable rules.

Definition 2.2.5 The set of firable events of a firing sequence oq. ., is defined as follows:
firable(o) ={f € E | Vr = (e, f,l,u,b) € R:30; € 0¢.pn : L(o;) =1 AN usable(o;,00.,)V
Joj € 00.n : L(oj) = (€, f,1,u,b) A €'#e ANusable(oj,00.0)}

The firable set contains all events which have a sufficient set of usable rules in the firing
sequence. All of the rules that enable an event must either have a usable firing in ¢ or
have an enabling event which conflicts with a rule that has a usable firing in o.

Definition 2.2.5 allows us to define the set of sequences which are allowed by the TEL
structure, ¥ € ((R*)(E*))* as follows:

Definition 2.2.6 A sequence o € 3 if and only if Vo;:

1. L(o;) € R = L(0;) € enabled(og...i 1)
2. L(O’l) e FE= L(Uz) S ﬁT‘(lble((IU“i,l)

3. L(o;) € RA firable(og..;) # 0 = 0541 € firable(og. ;)

The first requirement states that rules must be enabled when they fire. The second
requirement of this definition states that all events must be in the firable set when they
fire. The third requirement is that if the firable set of a rule firing is not empty, an event
in the firable set must follow it in the sequence.

Each rule firing o; can be associated with the event firing that enabled the rule by the

causal event function, E., defined as follows :
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Definition 2.2.7 E.(0;,0) = 0, where j is the mazimum value less than i for which

L(o;) ¢ enabled(og...j—1) and L(0;) € enabled(oq.. ;)

This means that the causal event for a rule firing is the event firing which causes the rule
to become enabled. This event may either be the enabling event for the rule or it may be
an event that changes the value of a signal that causes the boolean expression associated
with the rule to evaluate to true.

Any sequence can be given a timing assignment T which maps an event to the time
at which it occurs. For each sequence, o € %, there is a set of valid timing assignments,

referred to as valid(o).

Definition 2.2.8 A timing assignment 7 is valid for a sequence o if :
Vo, € 0 :71(0) < 1(0j41) A
L(o;) € E = 71(0i) = 7(0i-1) A
L(oy) € R = 1(Bulos,0)) + (L(02)) < 7(07) < 7(Eeloi,0)) + u(L(07))-

This means that a timing assignment is valid if it corresponds to the order of the firing
sequence, all events fire simultaneously with the rule immediately preceding their firing,
and rules fire between their lower and upper bounds after their causal event. A firing
sequence o € Y is reachable in the specification TEL structure if and only if it can be

given a valid timing assignment.

2.2.4 Examples of Firing Sequences

In order to clarify the formalism presented in the previous section, this section presents
some examples of timed firing sequences which are reachable in the specification shown in
Figures 2.3 and 2.4. Any valid sequence must begin with some interleaving of rule firings
l[ackline — /2, req+], [req—,req+], and [done—,req+]| since these are the only rules that
are initially enabled. Any sequence that does not begin with these rules it not reachable.
Suppose that the firing sequence begins with:
[ackline-/2, req+], [done-, req+], [req-, req+], reqg+
The rule firings can be given any timing assignment between two and five, as long as they
are monotonically increasing. For example:
{[ackline-/2, req+],2} {[done-, req+],3} {[req-, req+],4} {req+,4}
is a valid timed firing sequence. This sequence:

{[ackline-/2, req+],3} {[done-, req+],2} {[req-, req+],4} {req+,4}
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is not a valid timed firing sequence since the firing times are not monotonically increasing.

This sequence:

{[ackline-/2, req+],2} {[done-, req+],3} {[req-, req+],4} {req+,5}

is also invalid since the event firing req+ does not fire simultaneously with the last rule

in its sufficient set firing. Also note that after req+ fires there are no usable rule firings.
The only rule firing that is enabled by the valid firing sequence:

{[ackline-/2, req+],2} {[done-, req+],3} {[req-, req+],4} {req+,4}

is [ack—, sendline+]. When this rule and the event sendline+ fire, the following firing

sequence is produced:

[ackline-/2, req+], [done-, req+], [req-, req+], req+, [ack-,sendline+],

sendline+

In this sequence, req+ is causal to [ack—, sendline+] since [ack—, sendline+] is not
enabled before req+ fires, and is enabled after req+ fires. Since [ack—, sendline+] is
the causal rule for sendline+, req+ is causal to sendline+. Therefore, a valid timing
assignment must allow between two and five time units between req+ and sendline+.
The following is a valid timing assignment:

{[ackline-/2, req+],2} {[done-, req+],3} {[req-, req+],4} {req+,4},
{[ack-, sendline+],7}, {sendline+,7}

The firings, [req+, ackline+], ackline 4+ /1 are added to the firing sequence in a similar
manner resulting in the following timed firing sequence:

{[ackline-/2, req+],2} {[done-, req+],3} {[req-, req+],4} {req+,4},
{[ack-, sendline+],7}, {sendline+,7}, {[req+, ackline+/1],14},
{ackline+/1,14}

Although there are now multiple rules whose enabling events have fired, only one rule,
[sendline+, sendline — /1], has a boolean expression which is satisfied by the state. This
rule, and the event sendline — /1 are now added to the sequence:

{[ackline-/2, req+],2} {[done-, req+],3} {[req-, req+],4} {req+,4},
{[ack-, sendline+],7}, {sendline+,7}, {[req+, ackline+/1],14},
{ackline+/1,14}, {[sendline+, sendline-/1], 18}, {sendline-/1,18}

The event ackline+ /1 is causal to [sendline+, sendline — /1] so a timing assignment four

time units after ackline+ /1 fires is valid for [sendline+, sendline— /1] and sendline— /1.
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There are now three enabled rules, [ackline+ /1, ackline— /3], lackline+ /1, ackline— /1],
and [ackline + /1,done+]. Each of these rules has the others in its choice set, so when
one of them fires, other rules lose their enabling. Suppose that [ackline + /1,done] is

chosen to fire. The new timed firing sequence is as follows:

{[ackline-/2, req+],2} {[done-, req+],3} {[req-, req+],4} {req+,4},
{[ack-, sendline+],7}, {sendline+,7}, {[req+, ackline+/1],14},
{ackline+/1,14}, {[sendline+, sendline-/1], 18}, {sendline-/1,18},
{[ackline+/1, done+], 20}, {done+, 20}

The rule [ackline + /1, done+] has a conflict set consisting of [ackline + /1, ackline — /3],
since they share the same enabling event and have conflicting enabled events. Since
l[ackline + /1,done+] has fired in the sequence, [ackline + /1,ackline — /3] loses its
enabling and does not get another chance to fire until the event ackline + /1 fires again.

This firing sequence can, of course continue on indefinitely. However, the short
subsequence above illustrates most of the concepts about firing sequences defined in this
chapter. Since sequences are infinite, it is necessary to define equivalence classes between
sequences, so that an algorithm can determine when it is in a state it has seen before and

can stop adding new firings to the sequence. This is the topic of the next chapter.

2.3 Summary
This chapter defines the TEL structure formalism and the set of timed firing sequences
that are specified by a TEL structure. TEL structures conform more closely to circuit
behavior than purely event based formalisms. This makes it is easier to construct circuit
specifications using TEL structures than it is to construct them using purely event based

specification methods.



CHAPTER 3

GEOMETRIC TIMING ANALYSIS

Time is what prevents everything from hap-
pening at once.

- John Archibald Wheeler

In order to do synthesis or verification of a TEL structure specification, it is necessary
to find all of its allowable boolean states. The number of boolean states is finite, but the
number of firing sequences generated by a cyclic specification is infinite. An algorithm
that tries to find all boolean states by exploring all firing sequences never completes.
Therefore, it is necessary to define equivalence classes between firing sequences. Any two
firing sequences that are in the same equivalence class are guaranteed to lead to the same
future set of boolean states. Equivalence classes allow an algorithm to know when to
stop. When it finds a sequence which is in the same equivalence class as a previously
explored sequence, the algorithm knows that the current sequence cannot result in any
new behavior. This prevents the algorithm from attempting to explore infinitely long
sequences which allows it to complete. This chapter defines equivalence classes for timed
firing sequences and presents an algorithm for timed state space exploration based on

these equivalence classes.

3.1 Defining Equivalence Classes

The infinite nature of the set of timed firing sequences is two-fold. The number
of sequences o € X that have valid timing assignments is infinite. Additionally, each
individual sequence can have an infinite number of valid timing assignments. State space
exploration requires that this infinite set of sequence, timing assignment pairs be divided
into a finite set of equivalence classes. The obvious way to do this in the untimed case is
to say that two sequences o and o’ represent equivalent states if the set of enabled rules
that results from executing o and ¢’ is the same. Therefore, for state space exploration,

the untimed state of the system is simply the set of enabled rules. This is equivalent to



31

two Petri net firing sequences being in the same equivalence class if they have the same
marking. The timed state of the system is represented by a set of active clocks. An active
clock is created whenever a rule becomes enabled, and eliminated when the rule fires.
After a firing sequence is executed, there is an active clock for every rule that is enabled
by the execution of the firing sequence. The set of possible timing assignments to the
sequence determines the set of possible ages that the active clocks can have. This set
of ages represents the timed state of the specification at the end of the firing sequence.
Therefore, two firing sequences can be said to lead to the same timed state if they result in
the same set of enabled rules, and the sets of possible ages for the active clocks resulting
from the two sequences are the same.

In order to determine the age of an active clock, ¢;, it is necessary to know which event
firing enabled the rule, r;, associated with it. Each enabled rule, r;, can be associated
with the event firing that enabled it by a modification of the causal event function, E.,
defined in the previous chapter. The new function, F,, (for marking event), is defined as

follows:

Definition 3.1.1 E,,(r;,00.,) = 0; where j is the mazimum value for which

ri ¢ enabled(oy.. j—1) and r; € enabled(oy.. ;)

This means that the marking event for an enabled rule is the event firing which causes
the rule to become enabled. This event may either be the enabling event for the rule or
it may change the value of a signal that causes the boolean expression associated with
the rule to evaluate to true.

Definition 3.1.1 can be used to formally define maz_advance, the function that deter-
mines how much time can advance without forcing a rule to fire for a firing sequence o

of length n.

Definition 3.1.2 The function maz_advance(og. ,,T) is defined as follows:

max_advance(ao__n, T) = minr,—Eenabled(ao,_n)(u(ri) - (T(Un) - T(Em('riu UO..n)))

The maximum amount that time can advance without a rule r; exceeding its upper bound
is (u(r;) — (7(oy,) — T(Em(ri,00.n))), which is the difference between the upper bound
on r; and its current age. The definition of maz_advance returns the minimum of this
expression over all enabled rules. This is the maximum amount of time that can pass

before at least one rule must fire or exceed its upper bound.
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The maz_advance function is used to determine all of the possible clock ages that are

allowed by a timing assignment, 7, for a sequence of length n. It is computed as follows:

Definition 3.1.3 If r; € enabled(og.,,), ¢; must satisfy the following inequality:

T(on) — T(Em(riyo0.m)) < ¢ < (1(on) — T(Emn(ri,00.n)) + maz_advance(og. pn, T)

This means that a clock is no younger than the time difference between the firing of the
event that created it and the last event to fire in the sequence, and it must not exceed an
age that would force another rule to fire. The set of values for a clock ¢; that are allowed
by a timing assignment 7 are referred to as 7(¢;). Since the ages of the clocks determine
which future states are possible, two sequences o and o’ can be said to have the same
timed state if enabled(o) = enabled(o') and 7 is a valid timing assignment to o if and only
if there is a valid timing assignment 7' to ¢’ such that Vr; € enabled(c) : 7(¢;) = 7'(¢;).
This definition means that if the clock ages that can result from firing o and o' are
the same, the two sequences result in the same futures, and are therefore considered

equivalent.

3.2 Timed State Space Exploration

Suppose that there exists a representation M which gives the ages of the clocks
allowed by a firing sequence. A timed state, T'S, then consists of enabled(o) x M. This
representation of a timed state allows two sequences to be compared to see if they have
the same timed state, and an algorithm which explicitly examines firings sequences could
be developed to explore the state space. However, firing sequences can be very long.
Storing and manipulating them would take a large amount of memory and time. In order
to produce acceptable performance, a state space exploration algorithm must compactly
store the useful information from the firing sequence without storing the entire firing
sequernce.

In order to develop an algorithm to find all of the timed states without saving sequences
of firings, more information needs to be stored in the timed state. The boolean state
resulting from the sequence is necessary in order to compute a set of enabled rules.
Since the algorithm does not store the sequence itself, it must store the current state,
and update it whenever an event fires. Therefore, the current state, s., is added to
the timed state for use in the algorithm. Also, if the sequence is available, it is simple

to compute the set of rules whose enabling events have fired but whose enabled events
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have not. This set in not the same as the set of enabled rules, since it does not consider
boolean expressions. However, this set is necessary in order to compute the set of enabled
rules since only these rules are eligible to become enabled. This set is referred to as
R,, (for marked set) in the algorithm and added to the timed state. Next, since the
algorithm is not storing the sequence, it cannot compute the set of enabled rules from
the sequence. It must store this set as well by adding and removing rules as events
fire. In the algorithm the set R, replaces enabled(o) in the timed state. It may seem
that adding both R, and R, to the timed state is redundant, however it is necessary
since rules can be disabling or non-disabling. When non-disabling rules become enabled,
they remain enabled regardless of the current boolean state. Therefore, it cannot be
determined whether non-disabling rules are enabled simply from looking at R, and s..
Disabling rules can lose and regain their enabling many times before they fire depending
on the current boolean state. Therefore it is necessary to record which rules are currently
marked so that the algorithm knows which rules to check and possibly add to R.,,. Finally,
if the algorithm were operating on a sequence, it could determine the set of usable rule
firings from the sequence. Since it cannot look at the whole sequence, it must maintain
another set, Ry (for fired rules), which contains usable rule firings. This set is necessary
in order for the algorithm to determine which events can fire. With these additions, the
timed state for use in the algorithm now is as follows: R,, X Re, X s, X Ry x M.

Using this representation, the timed state space of a TEL structure can be explored
using the algorithm in Figure 3.1. The algorithm does a depth-first search of the timed
state space, finding all the timed states that are reachable. It first initializes all of the
elements of the timed state. The set R,,, is set to Ry, the set of initially marked rules in
the TEL structure. The current state is set to the initial state of the TEL structure. The
Rep, set is created by including all marked rules whose boolean expressions are satisfied
by the initial state. The timing information, M, is then initialized for all the enabled
rules. All initially enabled rules have a minimum age of zero and a maximum age of the
least upper bound among them. Their relative age differences are all set to zero. The
algorithm then initializes Ry to (). After these steps, the algorithm has created the initial
timed state. It combines all the elements of the timed state into a data structure, T'S, and
adds it to the state space ®. In order to use the state space for synthesis, the algorithm
also must store the set of possible transitions between states. This set is called I', and is

initially empty. After initializing I', the algorithm calls the function find_timed_enabled



34

Algorithm 3.2.1 (Find timed states)
state_space find_timed_states( TEL structure TEL = (N, s, A, E, R, Ry, #)){

}

R, = RU;
Se = 803
Reﬂ = {(e,f,l,u, b> € Rm : b(SC)},
M = initialize_timing(Re,, TEL);
Ry =10
timed_state TS = Rep X Ry, X 8¢ X Ry x M;
set_of_states ® = { TS};
set_of_transitions I' = (;
rule_list RL = find_timed_enabled(7'S, TEL);
bool done=false;
while (—done){
event_fired = false;
rule r = (e, f,1,u,b) = head(RL);
push (TS, tail(RL));

Rojqg = Ren;
Ry =RyUr;
R, =R, —1;
Ren = Ren -

if (Vi = (ei, foli,ui bi) € R:((ri € Ry)V (3rj = (ej, f,1,uj,b;) € Ry - e;#¢€j)))){
event_fired = true;
if (f = (zi+,m)) sc[s-index(x;)] = 1;
else if (f = (zi—,m)) s¢[s-index(z;)] = 0;
R, =Ry, —{rj € R: f € choice_set(r;)};
R, = Ry, U{{eis fisliyui bi) € R:e; = f};
Ry = Ry —{{e, fi,li;ui, b;) € Ry : fi = f};
Ry =Ry —{rj € R: f € choice_set(rj)};
Rey, = Rep — {rj € R: f € choice_set(r;)};
Reyy = Repn U{rj € Ry, : bi(sc)};
foreach (r; = (e;, fi,li, ui, b;) € Ren U Ry : 15 is disabling)
if (_‘bi(Sc))
if (fail_on_disable) return fail;
else R, = Rey, — 74;

}
M = update(TEL, M, 1, Rey,, Rey, — R4, event_fired);
TSoa =TS;

TS = Repy X Ry X s¢ X Ry x M;

if ('S ¢ ®)then
o =SU{TS};
I'=TU{(TSowa,T5)};
RL=find_timed_enabled (TS, TEL);

else if (7'S € @) then
D' =T U{(TSowa,T5)};
if (stack is not empty) then (7S, AL)=pop();
else done = true;

}

return (®,T);

Figure 3.1. Timed state space exploration.
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Algorithm 3.2.2 (Find timed enabled)
rule_list RL find_timed_enabled(T'S (Ren, Ry, s¢, Ry, M), TEL (N, sy, A, E, R, Ry, #)){
rule_list RL = ();
for each (r = (e, f,l,u,b) € Rep){
if (min_clock_value(M,r) > 1) add_list(RL,r);
return RIL;

Figure 3.2. Find timed enabled rules.

which returns the set of rules that are currently allowed to fire. The function is defined in
Figure 3.2. It goes through all of the enabled rules and adds those whose clocks meet their
lower bounds to the list of rules that can fire. The method for extracting the minimum
age of a rule’s clock from the representation of the timing is discussed in the next section.
The algorithm has now initialized everything and is ready to begin the main loop.

The main loop of the algorithm continues until all of the reachable states have been
found, a condition represented by the variable done. When the loop begins, the function
removes the rule it is going to fire, r, from the front of the rule list(i.e head(RL)) and
places the rest of the rule list (fail(AL)), and the timed state on the stack. Next, it
saved the current R,, set by assigning it to R,4. This is done so that the algorithm can
determine which rules in R, are newly added. It then adds r to the fired set since it is
firing, and removes it from R,, and R., since it is no longer available to fire. Next, the
algorithm checks if firing of r causes an event to fire. An event fires if all of the rules
that enable it are either in R; or have enabling events that conflict with the enabling
event of a rule that is in Ry. If an event can fire, the algorithm updates the state vector,
using the s_index function to find the index of the signal that is changing state in the
state vector. If a sequencing event fires, the state vector remains unchanged. Next the
algorithm updates the rule sets to reflect the firing of a new event. The marked set, R,
loses all rules that contain f in their choice sets, since they have lost their chance to fire.
The marked set gains all rules that have f, the firing event, as their enabling event. The
fired set loses all rules that enable f, and all rules that contain f in their choice sets.
These rules are no longer usable since they have either been used or become unusable
due the the firing of an event in their choice sets. The enabled set is also updated: it
loses all rules that contain f in their choice sets and gains all rules in R,,, whose boolean

expressions are satisfied in the new state. The algorithm then checks for rules that have
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been disabled. If a disabling rule is in the enabled set and its boolean expression is no
longer true due to the firing of f, it has been disabled. This can result in two different
outcomes. If the designer wishes to consider disablings failures, since they correspond to
hazards on the inputs of gates, then at this point the algorithm returns a fail condition.
If the designer does not want the algorithm to fail on a disabling, the offending rule is
removed from the enabled set and the algorithm continues. After all the rule sets have
been updated, the algorithm updates the timing information M. The details of this are
discussed in the next section. Next, the old timed state is saved in 1S4 and all of the
sets are combined into the new timed state. The algorithm then checks to see if this new
state is already in the state space. If it is not in the state space, the new state is added
is added to ® and a new transition, from 71'S,;4 to T'S, is added to the transition set I'.
Then a new list of rules to fire is computed from the current state. If the current state
is already in ®, the algorithm removes a state and rule list from the stack and continues
the main loop. If the stack is empty, then there are no more new states to be found and
the algorithm is completed.

Untimed states are only explored if they can be reached given the timing information
in the specification. This can eliminate large portions of the untimed state space for some
designs when the algorithm is used for synthesis. Many states that are reachable without
timing information are not reachable given the timing constraints in the specification.
However, the algorithm explores the entire fimed state space, and the size of the timed

state space depends on the representation chosen for the timing information.

3.3 Representing Time

The timing analysis algorithm presented here uses geometric regions (also known as
zones) to represent the timing information within a timed state. As discussed earlier
in the chapter, whenever a rule r; is enabled, a clock ¢; is created to be used in timing
analysis. The minimum and maximum age differences of all the clocks are stored in a
constraint matriz M (also known as a difference bound matrix). Each entry m;; in the
matrix M has the value maz(c; — ¢;), which is the maximum age difference of the clocks.
A dummy clock ¢y whose age is always 0 is also included. The maximum age difference
between ¢; and ¢ (myg;) is the maximum age of ¢;. The maximum age difference between
co and ¢; (mjg) is the negation of the minimum age of ¢;. Note that M only needs to

contain information on the timing of currently enabled rules, not on every rule in the
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TEL structure. This particular way of representing timed regions was first introduced
by Dill in [28]. The constraint matrix represents a convex |R.,| dimensional region.
Each dimension corresponds to an enabled rule, and the age at which a rule fires can be
anywhere within the space.

Many matrices can be used to represent the same region in space since some entries may
be underconstrained. However, there is a canonical representation where every constraint
is mazimally constraining. A set of constraints is maximally constraining if each constraint
can reach its maximum value for some timing assignment without violating any of the
other constraints. In the algorithm, the matrix is made maximally constraining through
a process called recanonicalization. Recanonicalization takes a matrix M where some of
the m;;’s are greater than max(cj — ¢;) and produces a matrix where all the m;;’s have
their maximum allowed value. The assignment of the m;;’s so that they all have their
maximum value is always unique, so the algorithm can determine when a given region
is equivalent to or contained in a region that has been seen before. Recanonicalization
is essentially the all pairs shortest path problem and can be done in O(n3) time with
Floyd’s algorithm [28].

Geometric regions are used by Rokicki in Orbits [58, 59, 53] to do timed state space
exploration on Orbital net specifications with the single behavioral place restriction. The
single behavioral place restriction is made in Orbits to ensure that the geometric regions
that represent the time behavior of the system are always convex. If the values of clocks
can exceed their upper bounds, the regions representing the time behavior may not be
convex. Figure 3.3 shows an example of this. In this specification, either the separation
between a+ and c+ must not exceed 5, or the separation between b+ and c+ must not
exceed 4. Since TEL structure semantics does not require both upper bound constraints to
be met, the resulting region is non-convex. Since Floyd’s algorithm only works on convex
regions, this must be avoided. However, when rules are allowed to fire independently of
events as they are in the state space exploration algorithm section, clocks can no longer
exceed their upper bounds, and the regions are guaranteed to be convex. In this example,
2 regions would be generated to cover the space shown in the figure.

The algorithm in Figure 3.4 shows how the function for updating timing information
used in Figure 3.1 is implemented with geometric regions. The function takes as input
the TEL structure specification, the constraint matrix, the rule that is firing, the set of

enabled rules, the set of newly enabled rules, and a bit which indicates if an event is
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Figure 3.3. (a) TEL structure with multiple behavior rules, and (b) non-convex region.

Algorithm 3.3.1 (Update)

void update( TEL structure TEL (N, sg, A, E, R, Ry, #) , geometric region M,
rule r = (e, f,1,u,b), rule set Rey, Rpew, bool event_fired) {
if (M[index(r)][0] > —I) then M [index(r)][0] = —I;

recanonicalize(M );
project(M, index(r));
if(event_fired){

forall(ri = <61‘, fi, li, Uj, bi S Rnew){

M0][index(r;)] = 0;
M{indez(r;)][0] = 0;
forall(r; € Ryew)

Mindex(r;)][index(r;)] = 0;
Mindex(r;)][index(r;)] = 0;

forall(r; € R., — Rnew)
Mindex(r;)][index(r;)| =M [index(r;)][0];
Mindex(r;)|[index(r;)]=M[0][index(r;)];

}
}
forall(r; = (e;, fi, i, wi, bi) € Ren)
MI0][index(r;)]=u,;
recanonicalize( M);
normalize( M);

Figure 3.4. Procedure for updating the geometric region.
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firing. The indez function used in the algorithm takes a rule, and returns the index in
the constraint matrix that corresponds to it. The first step of the function is to check if
the minimum age of the firing rule’s clock in the matrix is less than the lower bound on
the rule. If it is, the lower bound on the age of the rule in the matrix is set to the negation
of minimum age of the rule. This ensures that the minimum age of each clock is no less
than the difference between the time it is created and the time that the last event in the
sequence fires. The row and column corresponding to the fired rule is then removed from
the matrix by the project operation. Next, if an event fired, the algorithm adds clocks
for newly enabled rules. A rule is newly enabled if it is in Ryey. When a rule is initially
enabled, its age is zero, so the entries in the matrix for its minimum and maximum age
are set to zero. If a set of rules is enabled at the same time, the relative ages difference
between all pairs of rules in the set is zero. Therefore, entries in the matrix representing
age differences between events in Ry, are set to zero. Age relationships between the new
rules and the previously existing ones must also be entered in the matrix. The maximum
age difference between a new rule and any previously existing rule is just the maximum
age of the previously existing rule. Therefore, the new maximum age difference entries
are copied from row zero of the matrix which contains the maximum ages of existing
rules. The minimum age difference between the new rule and a previously existing rule
is the minimum age of the previously existing rule, and this minimum age is copied from
column zero of the matrix. Finally, the algorithm sets the maximum age of each rule in
the matrix to its specified maximum age, u, and recanonicalizes the matrix. This allows
time to advance as far as possible without causing any rule to exceed its maximum age.
The final step is normalization. The normalization step is necessary to deal with rules
that have infinite upper bounds and is described in detail by Rokicki in [58]. The new
region now represents all possible clock ages given the firing sequence that is currently

being explored.

3.4 Examples
Figure 3.5 shows an example of how the geometric algorithm would be applied to the
simple TEL structure shown at the top of the figure. The first column shows the constraint
matrix at each step and the second column shows the region in space represented by the
matrix. The recanonicalization procedure that is applied after each step is not shown

here, but is described in detail by Rokicki in [58]. Initially, rules r1 and r9 which have
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tokens to indicate they are initially marked, are given clocks ¢; and cy. The initial
constraint matrix indicates that the maximum age for both clocks is 5. Since the lower
timing bounds on both r{ and r9 are less than 5, they are both added to the list of rules
that can fire, RL. The rule 79 is chosen to fire. The clock for ry is projected out of the
constraint matrix, and the matrix is constrained so that that all clocks that existed when
ro fired must have a minimum age of 3. A new clock is added for the newly enabled rule,
r4. It must be between 3 and 5 time units younger than the clock for r; since the clock
for r; has an age between 3 and 5 time units when it is added. The list of rules to fire
now contains r; and r4. The rule r; is chosen to fire next, causing rules r3 and r5 to
become enabled. The new rule list contains r4 and r5 but not r3 since the lower bound
on r3 is 6, and the maximum age for rs allowed by the matrix is 2. Next, r4 is chosen
to fire. It does not cause an event to fire, so no new clocks are added to the constraint
matrix. After r4 fires, the maximum age of the rule r3 can advance to 10, allowing it to
be placed on the new rule firing list. The rule r3 can then fire, producing the last matrix
and region in the figure.

The next example, shown in Figure 3.6, demonstrates how the algorithm works with
level expressions. The TEL structure at the top of the figure has similar behavior to the
TEL structure shown in Figure 3.5, but it specifies the behavior using levels instead of
events. In the initial state, all of the signals are set to zero, except for A which is set to
one. Rules r3 and r5 are enabled and have entries in the constraint matrix. They are also
both on the rule list since their lower bounds are reached by the maximums in the matrix.
Rule r3 is chosen to fire, which causes B+ to fire. Due to the level expressions, no new
rules are enabled when B+ fires. The rule r3 is projected out of the matrix when it fires,
leaving a matrix containing only a clock for r5. The firing of r5 allows C+ to fire. Now,
the rule r7, which enables D+, becomes enabled. It is now the only enabled rule, since
r5 is projected when it fires. In a similar manner, the firing of D+ generates a region
containing a single rule which enables z+. All of the rules enabling falling transitions on
A+, B+,C+, and D+ are waiting for 2 to become high. When zx rises, 79,74, 76, and rg
become enabled at the same time, and their age differences in the matrix are set to zero.
The region which is shown for this matrix is projected into the cs, ¢4 plane. It shows that
co and cq must be the same age and have a maximum age of 10. All of the downgoing
transitions can now occur in any order. When A, B,C, and D, have fallen, x can fall,

returning the TEL structure to its initial state.



42

cl~rl, c2~r2, c3~r3, c4~r5, c5~r5
c6~16, c7~r7, c8~r8, c9~r9, c10~r10

B+ C+ D+ X+
DAl AT pa g L™\ [-A&-B&-C&-D]
< } ) r4 rSQ ) ré 17 ) r8 rgé ) r10
5,10 3 7 510 25\~ ¥ 510 25,7510 610 520
Constraint Matrix Geometric Region
0 &3 > EL - rt?,fr >
oo 5 5 urrent firing sequence=[]
c3| o 0 0 c5 A=1,B=O,C=O,D:0,X=O
Slo 0 0
c3 5
Constraint Matrix Geometric Region g -5
0 5 ! ! Current firing sequence=[r3, B+]
oo s A=1B=1C=0,D=0x=0
sl-3 0 5 3 5
Constraint Matrix Geometric Region g =7
0 c7 ! ! Current firing sequence=[r3, B+, 5, C+]
oo 1 A=1B=1C=1D=0x=0
c7lo o 0 5 10
Constraint Matrix Geometric Region | -9
0 ¢ ! ! Current firing sequence=[r3, B+, 5, C+, 19, D+]
oo 10 ——————- A=1,B=1C=1D=1x=0
©lo o 0 9 10

Constraint Matrix

0 c2 c4

Geometric Region
c8

(projected onto 2 dimentions}

00 10 10 10 10 ° EL ) rtzfl'r"l‘r&r8 [r3,B+,r5,C+,r7,D+,r9,x+]
urrent firin uence=[r3,B+,r5,C+,r7,D+,r9,x
c2l0 O 0 0 O .
c4 A=1,B=1C=1D=1x=1
40 O 0O 0 O
6|0 O 0O 0 o0
8|0 O 0O 0 O

2 10
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3.5 Summary
The algorithm presented in this chapter allows us to find the state space of any TEL
structure. It is a substantial improvement over the geometric algorithm presented by
Rokicki in [58] since it can deal with multiple behavioral rules and boolean conditions. It
can, however, generate a large number of regions since at least one region is generated for
each firing sequence explored. The next chapters introduce the POSET algorithm, which

dramatically reduces the number of regions needed to represent the timed state space.



CHAPTER 4

POSET TIMING 1

The distinction between past, present, and fu-
ture is only a stubbornly persistent illusion.
- Albert Einstein

While the geometric algorithm described in the previous chapter eliminates the single
behavioral rule restriction and analyzed specifications with level expressions, Rokicki [59]
and Bozga [13] show that the number of geometric regions the algorithm generates can
explode for highly concurrent timed systems. In [59], an algorithm is described that uses
partially ordered sets (POSETSs) instead of linear sequences during state space exploration
to mitigate this state explosion problem. POSET timing techniques take advantage of the
inherent concurrency in the specification and prevents additional regions from being added
for different sequences of firings that allow the same set of future behaviors in the system.
This results in a compression of the state space into fewer, larger geometric regions that,
taken together, contain the same region in space as the set of regions generated by the
standard geometric technique.

The specifications used by Rokicki in [59] differ from TEL structures in two significant
ways: they have the single behavioral rule restriction, and they do not include boolean
expressions. In order to develop a POSET algorithm that can analyze TEL structures,
both of these shortcomings must be dealt with. In this chapter, we present an algorithm
that can analyze a class of TEL structure with multiple behavioral rules where all boolean
expressions are true. In the next chapter, we extend the algorithm to analyze TEL

structures with more interesting boolean expressions.

4.1 Creating Larger Equivalence Classes
The semantics described in Chapter 3 require two firing sequences to be in different
equivalence classes if they result in the same set of enabled rules but allow different sets

of values to be assigned to the active clocks. This is based on the observation that if two
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sequences o and o’ result in the same set of enabled rules, and allow the same set of values
to be assigned to the active clocks, then a timed state is reachable from o if and only if
it is reachable from o’. However, in some cases the requirement that the allowable clock
values for both sequences must be the same is too restrictive. With additional analysis,
it is possible to derive a set of clock values for a set of enabled rules, enabled(c), which
are guaranteed to be allowed by some firing sequence o’ where enabled(c) = enabled(o’).
In other words, given a firing sequence, o, it is possible to determine not only which
clock values are allowed for o, but also a set of clock values that are guaranteed to be
allowed for some other reachable firing sequence, o', in which concurrent events are fired
in a different order. This allows the POSET algorithm to preemptively construct a larger
region for o, knowing that eventually a firing sequence, o', for which the clock values are
allowed, is found during the depth first search. When o’ is found, the clock values that it
allows are already represented in the region that is constructed for ¢, and an additional
region is not generated. This effectively combines the regions for o and ¢’ and reduces
the number of regions in the state space.

The computation necessary to determine this larger set of clock values is based on the
causality in the sequence. The causal event function, E., which returns the event that is
causal to a rule firing, is defined in Chapter 2. In order to develop the POSET algorithm,
more definitions concerning causality are necessary. The first definition states that an

event’s causal rule firing is the rule firing immediately preceding it.

Definition 4.1.1 The causal rule firing of an event firing o; is the rule firing immediately

preceding it, o;_1.

The rule firing immediately preceding o; is its causal rule. The firing of o;_; places L(o;)
in the firable set and therefore controls its firing time.

We can now define when an event firing o; is causal to another event firing o;.

Definition 4.1.2 FEwvent firing o; is causal to event firing o; (causal(o;,05,0)) if:

g; = Ec(Uifla J).

An event firing o; is causal to event firing o; if 0; is the causal event to o;’s causal rule.
If 0; is causal to o then it is the firing time of o; that determines the firing time of o;.
Since this chapter assumes that all boolean expressions are true, if an event firing

o; is causal to an event firing o, there is always a rule connecting L(o;) and L(o;) (i.e
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(L(0s),L(0j),l,u,b,) € R)). The time separation between o; and its causal event firing
o; is always less than the upper bound on this rule, u. This is formalized in the following

lemmas:

Lemma 4.1.1 If 0; is causal to o in o then the inequality: 7(o;) < 7(0;) + u(oj_1) is

true for all valid timing assignments to o.

The proof of this lemma (as well as all following lemmas and theorems) is given in
the appendix to this chapter. There is also a more general property that holds between
any two event firings o; and o;. If the firing o; is the enabling event of a rule enabling
0j, then the minimum time separation between the firings 0; and o; is at least the lower

bound on the rule.

Lemma 4.1.2 If L(oy) = (L(0;), L(0j),l,u,b) At < k < j then the inequality T(o;) >

7(0i) + l(ok) is true for all valid timing assignments, T, to o.

If all of the rules that enable the event fired by o; have empty choice sets, then the
lower and upper bounds on these inequalities can always be met by some reordering of
the firing sequence that is in . In order to prove this, a few more definitions and lemmas
are required. The first is the definition of the required set, which contains the set of
firings in o that must occur in order for a firing, o;, to meet the requirements specified
by Definition 2.2.6(1) and (2). If o; is the first firing of an initially marked rule, then the
required set of o; is empty. If g; is a rule firing, and is not the first firing of an initially
enabled rule, then its required set contains its enabling event. If g; is an event firing,
then firings of all of the rules that enable it are required for it to fire. If o; is an event
firing, and o; is the enabled event of a rule whose enabling event is o;, then o; is in the
required set of g;. This requirement follows from the one-safe property. When a rule is
enabled by the firing of its enabling event, its enabled event must fire before its enabling
event can fire again. The last condition is the transitive closure of these requirements,
if a firing o is required for o; then all events required for o; are also included in the

required set for g;. These requirements are defined formally as follows:
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Definition 4.1.3 The required set of o; in 9., (required(o;,00.,)) is defined recursively

as follows:

1. L(oj) =r € Ry A—30j € 0y : L(o;) = L(0;) = required(o;, 09.,) =0

2. L(O’l) =reRA (L(O'Z) Q:L RyvV E|Uj € 09,41 " L(O’j) = L(O'Z)) =

E.(04,00.n) € required(o;,o0.n).

3. L(o;) =e€ ENL(oj) = (¢,e,l,u,b) A (=Foy, € 0j41.4: L(og) = (¢/,e,l,u,b)V
(L(ok) = (€', f,1,u,b) A f#e)) = 0 € required(oi, 0o.n).-

4. L(o;)) =e€ EANL(0j) = f AN(e, f,l,u,b) € RNi > j = 0j € required(o;,00..n)

5. 0; € required(oj,00.n) N 0j € required(oy, 0o.n) = 0; € requried(oy, 0o p)

(Transitive closure.)

A sequence o’ which is created from o by changing the firing order is referred to as
a reordering of o. The reordering is described using a reordering function p. When p is
given a firing sequence, o, p(o) returns a new firing sequence which has the same firings
occurring in a different order. When p is given a firing 0;, p(0;) returns the firing number
of this firing in the reordered firing sequence. A sequence ¢’ is the result of a reordering
p(o) if and only if Vo, € 0 : (p(0;) =z = 0!, = 0;). A firing 0; € o is equal to a firing
ol € o' if L(o;) = L(0),), and they are both the same instance of L(o;) in their respective
sequences. It can be shown that if p meets the following conditions, then p(o) € ¥ if o in
Y. The first requirement is that if o; is in the required set of 0;, then o; cannot be made
to fire after o; in the new sequence. The second requirement is that if a rule firing o; 4
is followed by an event firing o;, then o; 1 and o; are also consecutive in the reordering.
The third requirement deals with choice. If o; is the firing of a rule with a non-empty
choice set, then its enabled event may or may not fire following it. To determine this from
the sequence, we define a function next(o;, o, e) which returns the next event enabled by
e that fires after ;. Suppose that L(o;) = (e, f,l,u,b) and next(o;,0,e) = f. In order for
the reordered sequence to be valid, all of the firings that occur between o; and f, cannot
be reordered arbitrarily. Once o; fires, no rule firing, o}, which enables an event that
conflicts with f can be reordered to occur before a rule firing o; whose enabled event is
f- This restriction is necessary to make sure that choices are not resolved differently in
the reordered firing sequence and the original firing sequence. If the next(o;,0,¢e) # f

then o; must not be reordered to occur after the event in its choice set that fires instead
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of f. If o; is reordered after the firing of the event in its choice set, then L(o;) would not
be enabled when it fires since it loses its enabling when the event in its choice set fires.

These conditions are defined formally as follows:

Definition 4.1.4 A reordering p of o is valid if:

1. 0j € required(o;,0) = p(o;) < p(o;)
2. L(o;) =e € E = p(o;) = ploj_1) +1

3. L(o;) =r = (e, f,l,u,b) € RA choice_set(r) # 0 A L(o,,) = next(oj,0,e) = f =
Vo; € 0iy1.m,Vop €0 :

(L(oj) = (e, f,I',u',b")) A (L(o%) € choice_set(r)) = p(o;) < p(ok)
4. L(o;) = r = (e, f,l,u,b) € R A choice_set(r) # 0 AN L(oy,) = next(o;,0,e) # [ =
p(oi) < plom)

The next lemma states that, if a sequence o is in X, then any reordering of o, p(0o) is

also in X.
Lemma 4.1.3 Given o € X and p is a valid reordering of o, if o' = p(o) then o’ € 3.

Lemma 4.1.3 can be used to redefine what it means for two sequences to have the
same timed state. Previously two sequences, o and o', are defined to result in the same
timed state if every set of clock ages that could result from a valid timing assignment to
o could also result from a valid timing assignment to o’. The definition of a valid timing
assignment is based on the concept of assigning firing times to rules and events that fired
in sequence, and therefore must assign firing times that are consistent with the order that
rules and events fire in the sequence. Timing assignments that allow rules and events to
fire out of order can be made if it is guaranteed that a sequence exists that can fire in
order with that timing assignment. The set of valid reorderings of a sequence o defines
when such a reordering exists by creating a partial order to which all of the sequences
that can result from reordering ¢ must conform.

More formally, a sequence o is used to define a partial order as follows.

Definition 4.1.5 A partial order consists of a set («) and an ordering relationship (> ).

The partial order defined by a sequence o is as follows:

1. a={o; €0}



49
2. > =0, > 0j if and only if Vp(o) : (p is valid = p(o;) > p(oj))

Two firings are only ordered in the partial order if they always occur in the same order
for all valid reorderings of o.

The set of firing sequences that can be derived by reordering the firings in ¢ in a way
that conforms to the partial order defined by o is referred to as PO(o). This set can be

used to define a new set of valid timing assignments for o.

Definition 4.1.6 A timing assignment 7 is PO wvalid for o if 30’ € PO(o) : T is valid

for o’.

Two sequences o and ¢’ can now be considered partial order equivalent if enabled(o) =
enabled(c’) and 7 is a PO valid timing assignment to o if and only if there is a PO valid
timing assignment 7’ to ¢’ such that Vr; € enabled(c) : 7(¢;) = 7'(¢;). This definition
eliminates the ordering of concurrent events from consideration in creating the equivalence
class, and therefore allows the equivalence classes to be larger. When a sequence o is
explored, a geometric region is created that includes all of the timing assignments that
are PO valid for 0. A timing assignment is only PO valid for o if there is some untimed
reachable firing sequence for which it is valid. Therefore, even though a PO valid timing
assignment may violate the ordering of o, it is guaranteed that the search eventually finds
a firing sequence for which it is valid. When this sequence is explored, the search can
immediately backtrack, thus eliminating timed states.

In order to be able to build this larger region based on the partial order implied
by a firing sequence, the algorithm must know what timing assignments are PO valid
for 0 while o is being explored. Lemmas 4.1.1 and 4.1.2 show that there are upper
and lower bounds on the separation between event firing times that depend only on
causality. If causality is preserved in a reordering of a firing sequence, these upper
and lower bounds are preserved as well. Therefore if for all sequences ¢’ in PO(o),
causal(o,0;,05) = causal(a',aEp(o_i)),aEp(o_j))), then all valid timing assignments to se-
quences in PO(o) satisfy the inequalities in the lemmas. The next lemma states that

causality is preserved by reordering.

Lemma 4.1.4 If causal(o,04,0;) and p is a valid reordering used to map o to o',

then causal (o, UEp(o—i))’ UEP(UJ')))
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If the geometric regions representing valid timing assignments are created based on
Lemmas 4.1.1 and 4.1.2, then the entire state space is found, but it may contain invalid
timing assignments since the lemmas do not guarantee that there are valid timing assign-
ments that fall in the entire range allowed by the inequalities. This means that although
all states in the state space are found, some extra states may be found as well. This may
result in false negative verification results or suboptimal synthesized circuits. In order
to explore the state space exactly, we need to be able to determine from the sequence
o, the minimum value of 2z and the maximum value of y, for which if o; is causal to o;,
there exists a valid reordering of o, such that x < 7(p(0;)) — 7(p(0;)) < y. Lemmas 4.1.1
and 4.1.2 provide bounds for these values and if o; is not enabled by any rules with

non-empty choice sets, £ and y are exactly the bounds from Lemmas 4.1.1 and 4.1.2.

Theorem 4.1.1 For any firing sequence o € X, that has a valid timing assignment, if o;
is causal to o;, and L(o;) is not enabled by any rules with non-empty choice sets, there
exists a firing sequence o' € X created from a reordering p for which there is a valid timing

assignment ' where T’(Uzp(ai))) +u(oj 1) = T,(O.Ep(a'j))).

This theorem means that if an event firing o; is causal to event firing o; and the event
fired by o0; is not enabled by any rules with non-empty choice sets, then the maximum
separation between firings o; and o; over all valid reorderings of the sequence is defined.
There is always a reordering with a valid timing assignment where the age of the clock
associated with o;’s causal rule reaches its upper bound. Therefore there is always a
reordering where the maximum separation between o; and o is u(o;_1). This means it
is possible to determine the maximum separation between o; and o; over all valid firing

sequences where o; is causal to o; by examining a single firing sequence o.

Theorem 4.1.2 For any firing sequence o € ¥ that has a valid timing assignment, if o;
is the firing of event e in o, there exists at least one rule firing oj : L(oj) = (¢/,e,l,u,b
for which in some firing sequence o' € X constructed from p there exists a valid timing

assignment 7' in which T’(Uzp(Ec(Uj’U))) + (o)) = T’(O’Ep(gi))).

This theorem deals with minimum separations between event firings. Unlike Theo-
rem 4.1.1 it does not have the restriction that the event firing in question is not enabled
by rules with non-empty choice sets. Intuitively, the theorem states that for every event

firing o;, there exists a reordering with a valid timing assignment where o; fires at the
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Figure 4.1. A choice computation.

minimum time allowed by the rules enabling it. This minimum time is the earliest time
at which all of of the rules enabling L(o;) have clocks whose ages meet the lower bounds
on the rules. The theorem shows that there is always a sequence where o; fires at this
minimum time.

These theorems allow an algorithm to construct a region based state space representa-
tion for the set of timing assignments that are possible in a specification if it contains no
conflicts. When there are conflicts, some rules have non-empty choice sets and the analysis
becomes more complex. Although Theorem 4.1.2 still applies, Theorem 4.1.1 only applies
to events that are not enabled by rules with non-empty choice sets. When a firing o; is
enabled by a rule with a non-empty choice set, the maximum time separation between
oj and its causal event o; may not be able to reach u(o;—1) for any valid reordering of o.
This is illustrated in Figure 4.1, where the rule (b+, z+) has a choice set consisting of y+
and the rule (b+, y+) has a choice set consisting of z+. Assume that a+, b+, and c+ all
fire at time zero. If ¢+ is causal to y+, r4 must fire after r3 but before both r and rs.
If r4 fires before r3, then r3 is causal to y+. If r4 fires after r; and rqy fire, then z+ fires
instead of y+. The event ¢+ can only be causal to y+ if r4 fires between one and two time
units after it becomes enabled, and it cannot reach its upper bound, 100. It is possible
to compute the upper bound for events enabled by rules with non-empty choice sets, but
the computation is complex, and in the worst case can involve examining the entire firing
sequence. Therefore, when an event, e;, which is enabled by a rule with a non-empty
choice set fires, the maximum separation between e; and its causal event is set to the
maximum allowed by the current firing sequence. This means that all timing assignments

to the firing of e; that are in the region are valid for the current firing sequence. Therefore
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no reordering of the rule firings which enable e; is needed for e; to fire at the computed
upper bound. This ensures that the resulting region is exact, but the restriction results
in more regions being generated than may be necessary.

The result of the restriction on reorderings imposed by rules with non-empty choice
sets is that the worst-case complexity of the POSET algorithm, when applied to TEL
structures with choice, is no better than the geometric algorithm presented in Chapter
3. However, in practice most circuit specifications are dominated by concurrent behavior
rather than choice behavior. The POSET algorithm still shows significant benefit over the
geometric algorithm in such a specification. In a specification consisting mostly of choice
behavior, concurrency is limited and therefore state explosion is less of a problem. In this
kind of specification the POSET algorithm essentially reduces to the geometric algorithm
with some additional overhead. Alternatively, the geometric algorithm can be used
directly on such a specification. Finally, we have found that for most circuit specifications,
the additional restriction imposed by choice has little impact on the generated state
space. If the restriction is eliminated, larger regions are generated, which are supersets
of the actual regions, but new untimed states are rarely found. Therefore, eliminating
the restriction may produce a conservative solution faster. If this is acceptable, events

enabled by rules with non-empty choice sets can be treated the same as other events.

4.2 POSET Algorithm

The POSET algorithm creates the larger equivalence classes discussed in the previous
section by maintaining a POSET matrix in addition to the constraint matrix discussed in
Chapter 3. The POSET matrix stores the minimum and maximum possible separations
between event firing times that can still effect future behavior. These separations rep-
resent the set of possible timing assignments to the partial order that is created by the
firing sequence currently being explored. At each iteration, the separations in the POSET
matrix are copied into the entries of the constraint matrix that restrict the differences in
the ages of the rules. Events are projected out of the POSET matrix when their timing
information is no longer needed, so the algorithm only needs to retain and operate on
local timing information.

When a new event fires and is added to the POSET matrix, the minimum and
maximum time separations between its firing time and the firing times of all other events

in the matrix are determined. They must only allow timing assignments to the partial
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order that are valid. This means that the separations must be consistent with the causality
in the firing sequence being explored. This is the major difference between the POSET
technique described here and the work presented by Rokicki in [58, 59]. In [58, 59], it
is not necessary to use explicit causality information since the causal rule is always the
behavioral rule. With multiple behavioral rules, causality must be considered in order to
compute a correct POSET matrix.

Figure 4.2 shows the modified update algorithm from Chapter 3 which uses the POSET
method. It calls an algorithm to update the POSET when an event fires. It then
advances time by projecting out the firing rule, setting all of the maximum ages to the
rule maximums, recanonicalizing, and normalizing

Figure 4.3 shows the algorithm which updates the POSET matrix, PM. The algorithm
first examines all of the events currently in the POSET matrix and determines what
relationship each event has to the firing event, f. This is simple since all of the information
necessary to do this is easily stored as the firing sequence is being explored. If an event
e; in PM is the causal event for the firing event f, then the minimum separation between
e; and f in PM is set to the lower bound on r., f’s causal rule. If f is enabled by a
rule with a non-empty choice set, then the maximum separation is set to the maximum
age of r. that is allowed by the current constraint matrix. This sets the separation to
the maximum allowed by the current firing sequence, not over all valid reorderings of the
current sequence. With this restriction, when an event which is enabled by a rule with
a non-empty choice set fires, the maximum timing assignment that it can have is limited
by the maximum amount time can advance before another rule must fire.

For example, consider the choice in Figure 4.1 and assume that events a+, b+, and c+
all fire at the same time. The constraint matrix that results after ro and r3 fire is shown
in the figure. If the rule r4 fires next, the event y+ fires. Event c+ is causal to y+, and ry
is the causal rule. The maximum bound on ry4 is 100, but this is not the value placed into
the POSET matrix by the algorithm. Since y+ is enabled by a rule with a non-empty
choice set, the value 2, which is the maximum age of r4 in the current constraint matrix,
is used instead.

Returning to the algorithm, if the firing event is only enabled by rules with empty
choice sets, then the only limitation is the upper bound on the causal rule, and the
separation between f and e; is set to the upper bound on r.. If an event is not causal,

but does enable one of the rules that enables f, then a constraint is added indicating that
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Algorithm 4.2.1 (Update)
void update( TEL structure TEL (N, so, A, E, R, Ry, #) , geometric region M,
POSET matriz PM, rule r = (e, f,1,u,b), rule set Rey, bool event_fired) {
if(event_fired) then
update_POSET(TEL, PM, M, 7, Ren);
project(M, index(r));
forall(r; = (e;, fi, li, ui, b;) € Rep)
M0][index(r;)] = wu;;
recanonicalize(M);
normalize(M);

Figure 4.2. Update the geometric region using POSETs.

Algorithm 4.2.2 (Update POSET)
void update POSET(TEL structure TEL = (N, s, A, E, R, Ry, #), POSET matriz PM,
constraint matriz M, causal rule r. = (e, f,l,u,b), rule set Rep) {
forall(e; # f : e; is represented in PM)
if(e; = ¢) then {
PMindez(e;)][index(f)] =
if (3r; = (ej, f.1j,uj,b;) € R hozce set(rj) # () then
PM[indez(f )][mdex(el | = M[ ][mdex(rc)]
else PM[index(f)][index(e;)] =
—l;;

}+ elseif(3r; = (e;, f, 1, u, b)) € R){
PMindex(e;)][index(f)] = —l;;
PM[index(ty)][index(t;)] = oo;

} else{
PM[index(t;)|[index(t ;)] = oo;

PM[index(ty)][index(t;)] = oo;
}

recanonicalize( PM);

forall (e; : is represented in PM)
if (—3r; = (e;, fi, li, ui, b;) € Ren) project( PM, index(e;);

project(M,index(r.));

forall(m = <€i, fir liy ug, b2> € Ren) {

M{index(r;)][0] = 0;
forall(r; € R.,){

Mindex(r;)|[index(r;)] = PMindex(causal(r;)][index(causal(r;))];
}

}
}

Figure 4.3. Procedure for updating the geometric region.
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the lower bound on the rule must be met, but the upper bound is left unconstrainted
by setting it to oo. If an event is unrelated to the firing event then both the minimum
anc maximum bounds are set to co. Once all of the constraints have been added to the
POSET maftrix, it is recanonicalized, causing all of the unconstrained entries to be set
to the maximum value allowed by the constraints. The process of updating the POSET
matrix is completed by removing any events that no longer enable rules in R, from the
maftrix.

The constraints computed in the POSET matrix can then be used to compute a
new constraint matrix when an event fires. The minimum age of each rule is set to
0 since information about minimums is already included in the POSET matrix. Next,
the algorithm sets each entry in the constraint matrix, which represent age differences
between rules, to the time seperation between their causal events. When the resulting
constraint matrix is recanonicalized, some of the inequalities that are copied from the
POSET matrix may be constrained further since the POSET inequalities do not take

into account the fact that the age of a rule may not exceed its upper bound.

4.3 Example

Figure 4.4 shows timing analysis based on POSETSs applied to the small TEL structure
shown at the top of the figure. This example shows how the algorithm solves two of the
problems that occur when using geometric regions for timed state space exploration:
region splitting and multiple behavioral rules. In this example, initially the list of rules
that can fire, RL, contains r9 and r;. The POSET matrix contains a single event, A+.
The constraint matrix shows that the maximum age of both r9 and ry is five. From this
timed state, either rule can fire. In this example, r5 is chosen. The POSET matrix now
contains the minimum and maximum separations between the firing times of A+ and
B+. The values are copied into the constraint matrix, since they correspond to the age
difference between rules enabled by A+ and rules enabled by B+. After the all pairs
shortest path algorithm is run, the separation of 7 that is possible between the firing of
A+ and the firing of B+ is reduced to 5 since the rule r; has a maximum bound of 5.
In this state r1 can fire, or r4 can fire. Rule 71 is chosen to fire next. When C+ fires,
the POSET matrix no longer needs to contain A+ since it no longer enables any enabled
rules. The POSET matrix shows that B+ could have fired at most 5 time units after C'+
and C+ could have fired at most 2 time units after B+. Now there are three enabled
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rules and the region is 3-dimensional. In the figure, a two dimensional projection of the
region onto the (c3,cy4) plane is shown. This region shows the advantage of the POSET
technique. Even though in this particular firing sequence B+ fires before C'+-, the region
produced here contains timing assignments where C'+ fires before B+. Since B+ and C+
occur in parallel, all of these timing assignments are valid for the partial order created by
the firing sequence [ro, B+,r1,C+]. The dashed line in the middle of the region shows
the two regions that would be generated by the standard geometric technique. The upper
region contains timing assignments where B+ fires first, and the lower region contains
timing assignments where C'+ fires first. In this timed state, rules r4, 3, and r5 can fire.
Once the rules r4 and r3 have fired, D+ fires. When D+ fires, information on event
B+ can be removed from the POSET matrix, but since C'+ still is the enabling event
for an enabled rule, r5;, C+ remains. Two different maximum separations between C+
and D+ are possible depending on whether event C'+ or B+ is causal to D+. This is
determined by whether the rule r4 or r3 fires last. The figure shows the two different
geometric regions that result from the two different firing sequences. In this example, one

region is a subset of the other, but this is not always the case.

4.4 Summary
Although the POSET algorithm presented in the chapter does not improve on the
worst case complexity of the geometric algorithm from Chapter 3, it produces a huge
performance improvement over the geometric algorithm when it is applied to highly
concurrent examples. In some cases, as shown in Chapter 9, the improvement is many
orders of magnitude. So far the POSET algorithm can only be applied to specifications
without level expressions. The next chapter extends the benefits of the POSET algorithm

to specifications with level expressions.
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4.5 Appendix
Lemma 4.1.1 If 0; is causal to o; in 0.y, then the inequality: 7(o;) < 7(0;) +u(oj_1)

1s true for all valid timing assignments to og_y,.

Proof: We know that the firing of event o; enabled the rule whose firing causes event o;

to fire. This allows us to prove the desired inequality, 7(0;) < 7(0;) + u(oj—1).

7 is valid = 7(0j_1) < 7(Ec(0j-1,0)) +u(oj_1) {Definition 2.2.8}
= 7(0j-1) < 7(04) +uloj_1) {oi = E.(0j_1,0), Definition 4.1.2)}

= 7(0j) < 7(03) +u(oj—1) {Definition 2.2.8,If 7 is valid, 7(0;) = 7(0j-1)}

Lemma 4.1.2 If L(oy) = (L(0;), L(0j),l,u,b) Ni < k < j then the inequality 7(o;) >

7(0i) + l(ok) is true for all valid timing assignments, T, to o.
Proof:
7 is valid A (0; = Ec(og,0)) = 7(0g) > 7(04) + (o) {Definition 2.2.8} (4.1)

Now we need to show that 7(o;) > 7(0y) in order to prove the inequality. There are two

cases to consider. The first is if 0; is causal to o; in o.

causal(o,04,05) = o = 0j_1 {Definition 4.1.2}
o =0j_1 = 7(05) = 7(0k) {Definition 2.2.8}

7(0j) = 1(0ok) AN (4.1) = 7(0j) > 7(03) + l(0%)
The second case is when o5 is not causal to o; in o.

—causal(o,0i,05) N o = Ec(oy,0) A L(oy) = (L(0:), L(05).1,u,b) =
k< j—1 {Definition 4.1.2}
k<j—1=71(ok) <7(0j) {Definition 2.2.8 and Definition 2.2.6}
7(ok) > 7(0j) A (4.1) = 7(0j) > 7(0) + (o))

| ]

Before we can prove Lemmas 4.1.3 and 4.1.4 from the text, we need to prove two

support lemmas concerning reorderings. The first lemma proves that a firing of a rule r
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cannot be reordered to occur after a later firing of r in the sequence. The second lemma
proves that an event cannot be reordered to occur after any future firings of rules that

enable it.

Lemma 4.4.1 Given that 0 € X, p is a valid reordering of o, and L(o;) € R:
(L(03) = L(oy) Ai < §) = p(01) < pla):

Proof: Since L(0;) = L(o;), they share the same enabling event and the same enabled
event. Definition 4.1.3(4) places the firing of 0;’s enabled event in the required set of o;’s
enabling event. Since o; is in the required set of its enabled event, 0;’s enabling event is
in the required set of o, and required sets are transitively closed, o; is in the required

set of 0. Therefore o; cannot be reordered to occur after o;. "

Lemma 4.4.2 Given that 0 € X2, p is a valid reordering of o, and L(o;) = e € E:
(L(oi) = L(oj) Ni < j) = ploi) < p(aj).

The rules that enable L(o;) and L(o;) are in their required sets. Since L(o;) = L(0;)
these rules are identical. Since their enabling rules are identical, their enabling rules are
ordered by Lemma 4.4.1. Since the rules in the required set of o; are required by the rules
in the required set of 0}, 0; is in the required set of o; and they must remain ordered. =

Now we can prove the rest of the lemmas from the chapter.

Lemma 4.1.3 Given that o € X and p is a valid reordering of o, if o' = p(o) then
o' €X.

Proof: We need to show that Vo!, € o', o], meets the requirements for a sequence to be
in 3 (Definition 2.2.6). First we deal with event firings. The only requirement on event
firings is stated in Definition 2.2.6(2). All event firings must satisfy the requirement.
Case 1: L(o}) =e€ E.

We need to show that L(c!,) € firable(of, , ;). The definition of firable (Definition 2.2.5)

for events has a single requirement. An event L(o;) is in the firable set for o;_; if:
Vr = (e, f,l,u,b) € R:30; € 0 : L(o;) = A 0; is usable V
Joj € o : L(oj) = (¢, f,1,u,b) A €'#e A o is usable

Since o € Sigma, this condition is true for o;. It is also true for o7, if no rule firing that

is needed to fire o; in o, can be moved after ¢/, in o', and no event firing which would
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cause a needed rule firing, 0, to become unusable before o; fires is moved between the
firing of 0; and o;. If a rule firing is needed to fire o; then it is in the required set of
i, therefore it fires before o, by the definition of a valid reordering (Def. 4.1.4). There
are two proof obligations to ensure that no event firing which would cause a needed rule

firing, 0, to become unusable is moved between the firing of o; and o;.

1. If 0; is a rule firing used to fire 0;, and oy, is an event firing which occurs after o;
and would make o; unusable, then o} cannot be reordered to occur before o;. This

is proved as follows:

Suppose that L(o;) = e and L(o;) = r = (¢/,e,l,u,b). An event firing could make
L(oj) unusable if it is a firing of e or it is a firing of an event in the choice set
of r. Suppose that oy is such an event firing. If L(o;) = e, then €’ is one of its
enabling events, if L(o) = f and f is in the choice set of r, €' is also one of its
enabling events. There must be some firing of ¢’ between o; and oy, to enable L(oy).
Therefore the firing of ¢’ which occurs between o; and oy, is in the required set of oy.
The firing o; is in the required set of any future firings of ¢’ by Definition 4.1.3(4).
The firing of €’ is in the required set of o, and o; is in the required set of the firing
of €', therefore, since required set are transitively closed, a o, cannot be reordered

to occur before o;.

2. If 0j is a rule firing used to fire 0;, and o}, is an event firing which occurs before o
and would make o; unusable, then o, cannot be reordered to occur after o;. This

is proved as follows:

Suppose the L(o;) = e and L(o;) = r = (¢/,e,l,u,b). An event firing could make
L(0;) unusable if it is a firing of e or it is a firing of an event in the choice set of
r. Suppose that oy is such an event firing. If o} occurs before o, there must be a
firing of €' that occurs between o), and ;. This firing is needed in order to fire o;
and is in the required set of o;. The firing of o}, is in the required set of the firing
of ¢’ by Definition 4.1.3(4). Therefore oy, is in the required set of o; and cannot be

reordered to occur after 0j.

This shows that L(c!) € firable(o} ,_ ;). The next two cases deal with the require-

ments placed on rule firings by Definition 2.2.6
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Case 2: L(ol) = r = (e, f,l,u,b) € R: We need to show that r is always enabled
when it fires (Definition 2.2.6(1)). The requirements for a rule to be enabled are given
in Definition 2.2.3. We need to show that in the reordering there is always a firing of e
to enable the rule that has not be used by another firing of r or by the firing of an event
in r’s choice set. (Since we are assuming all boolean expressions are true, the boolean
expression part of the enabled definition is always satisfied.) Formally, we need to show
that:

Joy, € 04, L(oy) = e A

30}, € 0y L(oh) = (o) A

-3o), € 0}y, : L(0),) = choice_set(L(o},))
Since o € ¥ this condition is satisfied by all rule firings o; € 0. In order to show that is
is satisfied in o’ we need to show that o;’s causal event firing, o, is not moved after o;,
no firing o, where L(oj) = L(o;) can be moved between the firing of o; and o;, and no
firing oy, where L(o}) € choice_set(L(o;)) can be moved between o; and o;.

The reordering restriction on the firing of o0;’s causal event, o0;, is guaranteed by
Definition 4.1.3(2). The firing of E.(0;,0) is in the required set of of o; and therefore o;
cannot be reordered after o; by the definition of reordering.

The reordering restriction on other firings of L(o;) is guaranteed by Lemma 4.4.1 for
all firings of L(o;) except the one immediately preceding o;. This firing, which we will call
o can be moved between o; and o; without violating the requirement that rule firings
remain ordered. However, since the TEL structure is one-safe this cannot happen. Since
ok is the firing of L(o;) immediately preceding o;, o; is the only firing of event L(o;)
that occurs between o and o;. Since the TEL structure is one-safe, this implies that the
firing of of o} must occur before the firing of o; since the firing oy is necessary before
the enabled event of L(0;) can fire, allowing a firing of its enabling event, L(o;) to occur.
Therefore, no rule firing other than the firing of L(o;) can be reordered to occur between
oj and o;.

The final restriction is that any oy : L(og) € choice_set(L(o;)) cannot be reordered
between o; and o;. Any firings of o have L(o;) as an enabling event by the definition
of choice_set. Therefore a firing of o, always has a firing of L(o;) in its required set.
Since event firings must remain ordered by Lemma 4.4.2, firings of o, separated from
o; by more than one firing of L(0;) are excluded. Now we consider a firing of o) that

occurs after o;, separated by one firing of L(o;). The firing of o; is necessary in order for



62

0;’s enabled event to fire again. L(0;)’s enabling event, L(o;), cannot fire again until its
enabled event fires. Therefore, o; must fire before L(0;) can fire again, and it is in the
required set of the next firing of L(0;). This means it is also in the required set of oy,
and o cannot be reordered to fire before ;. Finally we consider the firing of o, that
occurs before o;, separated from o;, by one firing of L(o;) which is the actual o;. In this
case oy, is in the required set of o; since o}, must fire in order to fire the event that L(o;)
enables. This event must fire before o; can fire and enable the rule again. Therefore oy,
is in the required set of 0; and cannot be reordered to occur after it.
We now need to prove that the remaining condition from Definition 2.2.6 is met.

Case 3: L(ol) € R, we need to show that:
L(o},) € R A firable(o| ,) # 0 = L(o,,,) € firable(oy_,) (4.2)

If the firable set of the subsequence ending in ¢; is non-empty in o, it is followed by an
event firing 0 1. In a valid reordered sequence, any firing which has a non-empty firable
set in o is followed by an event in o'. Therefore, if no rule firing that has an empty
firable set in o has a non-empty one in o', the requirement is satisfied. Now we need
to show that in a valid reordering it is not possible for a rule firing to have an empty
firable set in o and a non-empty one in ¢’. Event firings and their causal rule firings
are reordered consecutively. Therefore, if a rule firing, o; has an empty firable set in o,
and the result of its reordering, o/, has a non-empty firable set in ¢’, then any event in
the firable set of the reordered o; is not the same event that actually used the rule firing
in 0. This can only occur if the sequence is reordered in such a way that choices are
resolved differently in o and o’. The definition of a valid reordering (Definition 4.1.4(3)
& (4)) forces all choices to be resolved in the same direction in o in ¢'. Therefore
L(o}) € P A firable(oy ;) # 0 = L(oj,,) € firable(oy ;) holds.

We have now shown that ¢’ € & "

Lemma 4.1.4 If causal(o,0;,0;) and p is a valid reordering used to map o to o',

then causal (o, O'Ep(ai)), Uzp(aj)))

Proof: Definition 4.1.4(2) states that L(o;) € E = p(o;) = p(oj—1) + 1. Therefore
o;’s causal rule firing is the same in both sequences. Now we just need to show that
!

oj = Eoi_1,0) = Opio;) = Ec(a;(o_iil),a'). If 0j = E.(0;_1,0), then it is in the

required set of o; and cannot be reordered to fire later than o;. This satisfies the first
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constraint of Definition 2.2.7. Now we need to show that no other event firing that enables
o;—1 can be mapped between o; and o; ;. This event firing would have to be a firing
of L(oj) since there are no boolean expressions. Since firings of the same event remain
ordered, the only event firing that could move between o; and o;_; is the firing of L(o;)
immediately following o;_1. But, o; is the firing of an event enabled by o}, so it is in
the required set of the next firing of L(o;). Thus, the next firing of L(o;) cannot be
reordered to occur before o;. Therefore, there is no valid reordering of the firing sequence
where J;(sj) + EC(U;(”FI), o'). Therefore, causal(c’, Uzp(”i)), sz(aj))) is true for all valid

reorderings. "

In order to prove the two theorems, additional definitions are necessary. These
definitions specify the latest and earliest times that firings can occur with a valid timing

assignment:

Definition 4.9.1 Define the max_valid timing assignment to an event firing o; recur-

swely as follows:

1. L(o;) € R = maz_valid(o;) = min(maz_valid(E.(0;, 0))+u(o;), maz_valid(o;41)))

2. L(o;) € E = mazwalid(o;) = maz_valid(o;_1)

Definition 4.9.2 Define the min_valid timing assignment to a firing o; recursively as

follows:

1. L(oi) € R = minwalid(o;) = maz(min_valid(E.(0;,0)) + l(0;), min_valid(o;_1))

2. L(o;) € T = min_valid(o;) = min_valid(o; 1)

These definitions follow directly from the definition of a valid timing assignment.
Events always fire simultaneously with their causal rule, so their minimum and maximum
firing times are determined by the minimum and maximum firing times of this rule. The
minimum and maximum firing times of a rule are determined by when the rule becomes
enabled, and by the other firings surrounding it in the sequence. Since the firing order
of the sequence must be reflected by the timing assignment, the maximum valid timing
assignment to a rule firing is limited by the maximum valid timing assignments of all
firings following it. For the minimum valid firing time, the rule cannot fire before the

minimum valid firing time of all rules preceding it. These definitions allow us to prove
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upper and lower bounds on the times between event firings that are possible over all valid

reorderings of a firing sequence.

Theorem 4.1.1 For any firing sequence o € 3 that has a valid timing assignment, if o; s
causal to 0, and o; does not conflict with any other event, there exists a firing sequence
o' € X for which there is a valid timing assignment 7' where T'(azp(gi))) +u(oj_1) =
™ (%o(o;)-

Proof: Definition 4.9.1 states that this equation can always be satisfied for any o where
0; is causal to o; unless there is some oy that limits the maximum firing time of ;. A
firing oy, limits that maximum firing time of o; if it fires after o; in 0 and has a lower
maximum valid firing time than o;. Since o; is an event, it must fire at the same time as
its causal rule firing o;_;. All firings limiting the firing time of o; are actually limiting
the firing time of o;_; and must be moved to fire before o;_;. We need to show that
we can create a valid reordering p which generates a sequence where all such firings are
moved before the firing of o;_;. Since o is not enabled by a rule with a non-empty choice
set, only requirement (1) of Definition 4.1.4 applies to the order of firings relative to o;_.
Therefore, we can move all oy, : 0; ¢ required(oy,) before the firing of o;_;. We create a

reordering p where:

plor) > ploj—1) = (k= j) Vo; € required(oy) V (4.3)

maz_valid(oy) > maz_valid(E.(0j_1,0)) + u(o;_1)) (4.4)
This implies the following in a sequence o’ = p(o) where p(o;) = z and p(oy) = y:
y > & = oy, € required(oy) V maz_valid(oy) > maz_valid(E.(0},_1,0")) 4+ u(oy_1) (4.5)

Any firing that occurs after o), (which is the reordered o) in the new sequence either
did not limit the firing time of o, in ¢ or requires o; to fire. All firings that have o),
in their required sets can now be given timing assignments that do not limit the firing
time of ¢! because o), must fire before they can fire, and moving its maximum valid
timing assignment later also moves theirs later. Since no firings that limit the firing time
of o} occur after o), this can always be done without violating the ordering constraint.

Therefore there exists a firing sequence ¢’ € ¥ for which there is a valid timing assignment

/

7" where T,(U(p(ak))) +u(oj1) = T,(Uzp(ffj))) )
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Theorem 4.1.2 For any firing sequence o € X, that has a valid timing assignment, if o;
is the firing of event e in o, there exists at least one rule firing o : L(oj) = (' e,l,u,b
for which in some firing sequence o' € ¥ constructed from p there exists a valid timing

assignment 7' in which T’(UEp(EC(Uj’U))) + (o)) = T’(O’Ep(gi))).

Proof: The proof of this theorem is similar to the proof of the Theorem 4.1.1. The goal
is to move any firings that are limiting the minimum firing time of o; to fire after o;.
Since the firing time of an event is determined by the rule firing, we are again dealing
with the firing time of the rule firing 0;_;. Since this time we are trying to move firings
to occur after o; instead of before o;, Definition 4.1.4(3) does not restrict the possible
reorderings relative to o;. Also any firing that occurs after o; cannot be in the required
set of any firing that occurs before g; since ¢ € 3. Therefore all firings that occur before
o; that are not in the required set of o; and limit the minimum firing time of o; can be
reordered to fire after o;. When this is done, only firings that are in the required set of
o; limit its minimum firing time. Since all of the rule firings necessary to fire o; are in its

required set, there is at least one rule for which o; can fire at its minimum firing time. »



CHAPTER 5

POSET TIMING I1

Good order is the foundation of all things.
- Edmund Burke

The previous chapter presents a version of the POSET algorithm that analyzes TEL
structures with multiple behavioral rules. This version of the algorithm assumes that
all boolean expressions in the TEL structure are true, which is clearly a severe limita-
tion. Therefore, this chapter extends the algorithm further, to allow it to analyze TEL
structures with non-trivial level expressions.

The algorithm in Chapter 4 is based on the ability to take a sequence ¢ € ¥ and
change the firing order so that a given timing assignment can be made to it. The chapter
presents a number of conditions which must be met by the reordering in order to ensure
that the new sequence is a valid firing sequence for the TEL structure. These reordering
conditions do not consider the impact of boolean expressions. In order to modify the
algorithm from the last chapter to work on TEL structures with boolean expressions,
additional reordering conditions which consider the impact of boolean expressions are
needed to guarantee that the reordered sequence preserves causality and conforms to the

requirements in Definition 2.2.6.

5.1 Extending the Required Set
The first reordering restriction in Definition 4.1.4 orders firings based on required
sets. If a firing o; is in the required set of o;, 0; must fire before o; in the reordered
sequence. This requirement still applies to TEL structures with boolean expressions,
but the definition of required, Definition 4.1.3, needs to be extended to consider boolean

expressions. The new definition of the required set is shown in Definition 5.1.1 below.
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Definition 5.1.1 The required set of o; in o9, (required(o;,00.,)) is defined recursively

as follows:

1. L(oj) =r € Ry A—30j € 0y : L(o;) = L(0;) = required(o;, 09.,) =0

2. L(O’l) =reRA _|(L(UZ) € Ry A —E|Uj € 00g.4—1: L(Uj) = L(O’l)) =

E.(0i,00.n) € required(o;,09.,)-

3. L(o;) =eNL(oj) = (¢/,e,l,u,b) AN(—3oy, € 0j41.i : L(og) = (e, e,l,u,b) V (L(o}) =
(¢, f,1,u,b) A f#e)) = o € required(o;,0q..n).

4. L(o;) =eNL(oj) = f A(e, f,l,u,b) € RNi> j = o0; € required(o;,00..p)

5. 0; € required(oj,00.n) N 0j € required(oy, 00.n) = 0; € requried(oy, oo p)

(Transitive closure.)

6. L(o;) = (e, f,l,u,b) NL(oj) =eNj<iA-Top€oj;:Log) =e=

oj € required(o;, o)

7. L(o;) =1 = (e, f,l,u,b) Ar is disabling A=b(¢(00. j—ij+1.i-1)) =

oj € required(o;, o)

8. L(o;) =r = (e, f,1,u,b) Ar is non-disabling \ 0 = E.(0;,00.n) N

—b(p(00.k—1,k+1..5)) = Ok € required(o;, o)

The first five items in the definition are from the previous chapter and the last three are
extensions. The first extension concerns enabling events. Definition 5.1.1(2) states that
the causal event of a rule firing is in the required set of that rule firing. When there
are no boolean expressions, this causal event is always the enabling event of the rule.
When boolean expressions are added, the enabling event could be an event that causes
the boolean expression to become true. If this is the case, the definition of required does
not include the enabling event of every rule in its required set and this needs to be added.
This is done formally in Definition 5.1.1(6).

Additions to the required set are also necessary to ensure that the boolean expression
is satisfied when a rule fires. The causal event is in the required set, and this event may
be the one whose firing causes the value of the boolean expression to change from false
to true. However, all of the other event firings which are necessary to cause the boolean
expression to evaluate to true are not included by the original definition. Consider for
example the rule e+ — f+ which has a boolean expression a A b, and assume that it is

enabled by the firing sequence a-+, e+, b+. The original required definition includes only
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the firing of b+ in the required set of [e+, f+]. Definition 5.1.1(6) includes the firings of
e+ and b+ in the required set. The firing of a+ is not included by either the original
definition or Definition 5.1.1(6), but it is needed in order for [e+, f+] to be enabled when
it fires. We need to add an additional condition to the required definition to deal with
this. The condition is slightly different depending on whether the rule is disabling or
non-disabling and defined formally in Definition 5.1.1(7) and (8). If the rule is disabling,
the boolean condition must be true when the rule fires and all firings necessary for it
to be true must be in the required set. If the rule is non-disabling, then the boolean
expression only needs to be true when the rule becomes enabled. After the rule becomes
enabled, the boolean expression can become false before the rule fires and the rule is still
enabled when it fires. Definition 5.1.1(7) is for disabling rules. If a rule firing o; is a
disabling rule, and the removal of another firing, o;, from the sequence would cause b to
evaluate to false on the state generated by the sequence, then o; is in the required set of
0;. Definition 5.1.1(8) is for non-disabling rules. The condition is similar, but it requires
that the boolean expression is true when the rule is enabled, not when it fires. Firings
that are included in the required set of o; due to the conditions in Definition 5.1.1(7) and
(8) are referred to as the context set of o;, (context(o;,0)), since their firings are required
to create a boolean state in which o; can be enabled. These conditions include all firings

needed for a rule to be enabled when it fires in the sequence in the required set.

5.2 Adding Reordering Restrictions
Unfortunately, the extension of the required set is not sufficient for Definition 4.1.4 to
guarantee that any valid reordering of a sequence o € X is also in ¥. Additions to the
definition of a valid reordering are also necessary. The new definition of a valid reordering

is shown in Definition 5.2.1 below:

Definition 5.2.1 A reordering p of o is valid if:

1. 0; € required(o;, o) = p(o;) < p(o;)
2. L(o;) =e € E = p(oi) = p(oi-1) +1

3. L(o;) =r = (e, f,l,u,b) € RA choice_set(r) # 0 A L(oy,) = next(oj,0,¢) = f =
Vo € 0iy1.m,Vop €0 :

(L(oj) = (e, f,I',u',b")) A (L(og) € choice_set(r)) = p(oj) < p(ok)
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4. L(o;) = r = (e, f,l,u,b) € R A choice_set(r) # O A L(oy,) = next(o;,0,e) # [ =
p(oi) < plom)

5. If oj € context(os,0) A ((L(oj) = 2+ A L(oy) = 2—) V (L(0;) = 2— A L(oy) = z+))
then (k > i = p(ok) > p(oi)) A (k < j = p(ok) < ploj)).

6. If 0j = Ec(04,0) and oy, occurs before oj and the firing of oy would be causal to o;

if it occurred after o; then p(oy) < p(oj).

7. If 0; = E.(04,0) and oy, occurs after o; and the firing of oy, would be causal to o; if

it occurred before o then p(oy) > p(o;).

The first four parts of the definition are from the previous definition of valid reordering.
These requirements, along with the new required set definition do ensure that no firings
needed to enable a rule are reordered to occur after it. However, they do not prevent
events whose firing may disable a rule firing from being reordered to occur before its
firing. Consider again the rule e+ — f+ with boolean expression a A b and the firing
sequence e+, a+, b+, [e+, f+]. All of the firings in the sequence are now in the required
set of [e+, f+], but there is nothing in the definition of reordering to prevent a firing of a—
from being reordered to occur before [e+, f+] as follows: e+, a+, b+, a—, [e+, f+]. Now,
assuming that [e+, f+] is disabling, it is not enabled when it fires. This problem can
also occur with non-disabling rules. Consider that the firing of a— is reordered to occur
before the firing of b+, creating the following firing sequence: e+, a+,a—, b+, [e+, f+].
In this sequence, the rule [e+, f+] is never enabled at all since its boolean expression is
never satisfied.

The first extention to the definition of valid reordering (item 5) ensures that this
cannot happen. This addition to the reordering definition ensures that if a firing o; is
context to o;, no firing which reverses the effect of o; is reordered to occur between
oj and o;. This addition, along with the new required set, is sufficient to ensure that
all reorderings of a sequence o; are valid. The addition is a bit overly restrictive since
it prevents a reversing event from being reordered between a context event firing and
the rule firing in all cases. For non-disabling rules there are some situations where the
reversing event does not disable the rule. However, for algorithmic purposes it is simpler
to assume that reversing events can never be reordered.

Another concern is the preservation of causality. When there are no boolean expres-

sions, any reordering of the sequence where the rule firing immediately preceding each
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event firing does not change, preserves the causality in the sequence. The last rule firing
before an event, o;, fires is always the causal rule of o; by definition. If all boolean
expressions are true, then the enabling event for the rule o;_; is always the causal event
for event firing 0;. With boolean expressions, this is not the case. Another event firing
may have caused the rule that fires in 0;_; to become enabled, by causing the current
state to satisfy its boolean expression. A firing sequence o must not be reordered in a
way that changes the identity of this event. Therefore, the algorithm needs an additional
reordering restriction that ensures that the identity of the causal event does not change.
These restrictions are specified in items 6 and 7 of Definition 5.2.1.

We have now defined a set of restrictions on reordering to ensure that the reordered
sequence is valid and that it preserves the causality of the original sequence. However,
determining which reorderings meet these restrictions algorithmically is difficult when
boolean expressions are complex. When only the restrictions from the previous chapter
are used, the ability to reorder an event firing is independent of other reordering deci-
sions and each event movement can be made independently. When arbitrary boolean
expressions are included, the ability to change the firing order of 0; and o; can depend
on whether the location of another event o} has been changed. For example, consider the
boolean expression a A (b V ¢) on a rule where the enabled event is f+. Suppose that in
the original firing sequence a, b, and c¢ are all true when f+ fires. Either b+ or ¢+ could
be reordered to occur after f+ because doing so would not cause Definition 5.1.1 to be
violated. However, once the decision has been made to reorder b+ after f+, ¢+ cannot
be reordered after f+. Since reordering decisions are no longer independent, it is difficult
to examine all possible reorderings at once since a reordering of one event may exclude
the reordering of another event.

Therefore, if POSET timing is used, the TEL structures are limited to those where each
boolean expression is either a single and term or a single or term. When this restriction
is used reorderings can again be considered independently. In a simple and expression
all context signals must remain before the rule firing. In an or, the only context signal
firings are the causal event firing and the enabling event. Any other firings involved in
the or expression can be reordered to occur after the rule firing. In practice, limiting
the specification to single ands and ors does not prove to be a significant limitation. If
a more complex boolean expression is required, the results from the POSET algorithm

are conservative. If an exact result with arbitrary expressions is needed, then either
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T (@& b)], *" [(c & d)]

[(@& b) | (c & d)] — 25 25

2,5 $1 2 $1#$2
f+ 0,0\\ A,O

Figure 5.1. Transformations to simple and and or.

the simpler, geometric algorithm for TEL structures from Chapter 3 can be used, or
the specification can be transformed into one that contains only simple and and or
expressions.

Figure 5.1 shows the transformation. Before a graph can be transformed, all boolean
expressions must be in sum of products form. Sequencing events are created for each of
the terms and rules are added between the rule’s enabling event and each of the sequencing
events. Rules are also added between each of the sequencing events and the enabled event.
Each of the rules leading from the enabling event is assigned one of the terms from the
sum of products and the delay from the original rule. The rules enabled by the sequencing
events are assigned a boolean expression of true and a delay of 0. All possible pairs of
sequencing events are added to the conflict set. Only one of the sequencing events must
fire in order to fire the enabled event. This transformation works without and algorithmic
changes if the rules with complex boolean expressions are non-disabling. If the rules are
are disabling, the algorithm must keep know which rules are created by transformation
and only generate a disabling error if all of them become disabled. This is necessary since
the disabling of only one of the rules generated by the transformation does not indicate
that the originial rule is disabled. Although this transformation adds a significant number

of extra rules and events for large expressions, large expressions are rare.

5.3 Simplified Restrictions

When the boolean expressions are restricted, simpler, more algorithmic versions of the

additional reordering restrictions can be developed. For any firing o; € o:
1. If L(oy) is a rule where b = true, there are no additional restrictions.

2. If L(o;) is an event, then there are no additional restrictions.
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3. If L(o;) is a disabling rule , no event which would disable L(o;) can be moved before

;.

4. If L(o;) is a non-disabling rule, and o; = F.(0;,0), no event which would prevent

the firing of o; from enabling o; can be moved before o;.
5. If L(0;) is a rule with an and expression and o is the causal event of o; then:

(a) The enabling event of L(c;) cannot be moved after o;.

(b) No context firing can be moved after o;.
6. If L(o;) is a rule with an or expression, and o; is the causal event to o; then:

(a) The enabling event of L(o;) cannot be moved after o;.

(b) No firing which causes the or expression to become true can be moved before
0j-
(c) If L(o;) is the enabling event of L(o;), then no event can be reordered to occur

after o; if it would cause the or expression to be false when o; fires.

The first four conditions apply equally to and and or expressions. Obviously, if there
is no boolean expression, then the old reordering restrictions that do not consider them
are sufficient. If the firing is an event, there are no additional restrictions since all of the
added conditions in the previous section concern rules. If a rule is disabling, a reordering
should not cause a rule to become disabled if it does not do so in the original sequence.
For example, if a disabling rule e+ — f+ has a boolean expression a A b, a firing of
a— cannot be reordered to occur before the rule firing. If the rule is non-disabling, the
restriction is needed that no event prevents the rule’s causal event from enabling it. For
example, consider the non-disabling rule e+ — f+, which has boolean expression a A b,
and causal event e+. If e+ is causal, then a A b is true when it fires. No firing of a— can
be moved to fire before e+ since it would not allow the firing of e+ to enable the rule.

There are specific additional restrictions for rules with and’s and or’s. If there is an
and expression, then a reordering may change the causality or cause the new sequence
to be invalid if some signal firing is moved later in the sequence. The restriction prevents
a sequence from being created where the and expression is not true when the rule fires.
Since no event firing which effects the expression may be moved after the causal event,

it also ensures that the causal event for the rule firing remains the same. For example,
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consider a rule e+ — f+ which has a boolean expression a A b, and assume that b+ is
causal in the firing sequence. The fact that b+ is causal implies that there has been a
firing of e+ and a firing of a4+ somewhere in the sequence before b+. In a reordering, the
firings of e+ and a+ are not allowed to be moved after b+ in the firing sequence.

With or expressions, three conditions are necessary. As with and expressions, the
enabling event must not be reordered to occur after the causal event. The reordering
also must ensure that the boolean expression does not become true too early. If the
reordering moves an event firing that satisfies the or to occur before the causal event
then the causality changes. Therefore, this is not allowed. For example, consider a rule
e+ — f+ which has a boolean expression a V b, and assume that b+ is causal in the
firing sequence. The firing of e+ cannot move after b+ just like in the and expression.
However, no firing of a+ can be allowed to move before b+ unlike in the and expression.
If a+ fires first, then it is the causal event. The final condition ensures that the or
expression is satisfied when the rule fires. If the enabling event is the causal event, the
the firing which satisfied the or expression cannot be moved after the firing of the enabling
event. Arbitrary boolean expressions require combinations of these requirements which
could be defined, but would be difficult to implement in an algorithm that is building
geometric regions. The next section describes how these reordering conditions are used
to build geometric regions which represent timing assignments to reorderings of the firing

sequence.

5.4 Extended POSET Algorithm

This section describes how the new reordering restrictions are implemented in the
POSET algorithm. The changes occur only in the function that updates the POSET
matrix. Time separations that are left unbounded by the algorithm in the previous
section are now assigned values to satisfy the new reordering restrictions.

Figure 5.2 shows the procedure for updating the POSET matrix. It has one argument
that the update in the previous chapter does not, R, 4. This set contains the rules that
enable f., the firing event, and are in the fired set when f., fires. These are the rule firings
in the sequence that are used to fire f.. Like in the previous chapter, each entry in the
matrix represents the maximum time separation possible between two event firings over
all possible valid reorderings of the firing sequence. When a new event, f,., fires, entries

must be added to store the separations between f. and all of the other events represented
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Algorithm 5.4.1 (Update the POSET)
update_poset(causal rule r. = (ec, fe,le, e, be), used rule set Rygseq, POSET matriz PM,
constraint matriz M, TEL (N, so, A, E, R, #), state s.){
forall(e; : e; is represented in PM){
PM[indez(f)][index(e;)] = oo;
PM[indez(e;)][index(f)] = oo;
}
forall(e; : e; is represented PM){
if(e; = causal(r.)) then {
if(Vr = (e, fe,l,u,b) € R : choice_set(r) = ()) then
PMindex(f.)|[index(e;)] = ue;
else PM[index(f.)|[index(e;)] = M[0][index(r.)];
if (disable(e;, f.)) then
PMindex(e;)][index(f.)] = 0;
forall(r = (e, fc,l,u,b) € Rygeq)
ere = causal(r);
if(e; = e A PM[index(f.)][index(e;)] > —I) then
PMindex(e;)][index(f.)] = —I;
if(e; = e;c A PM[index(ey)][index(e;)] > —1) then
PMindex(e,.)|[index(e;)] = —I;
if(and_contezt(e;,r) N PM[index(ey.)|[index(e;)] > 0) then
PMindex(e,.)][index(e;)] = 0;
if(or_context(e;,r) A PMlindex(e;)][index(erc)] > 0) then
PMindex(e;)][index(er.)] = 0;
}
}

recanonicalize( PM);
forall (e; : e; is represented in PM){
if (—=3r; = (ey, fi, li, ui, b;) € Reyy A —match(e;, s.)) then
project( PM, index(e;));
forall(ri = <6i, fi, li, u;, bz> € Ren) {
M{indez(r;)][0] = 0;
forall(r; € Re,){
Mindex(r;)][index(r;)] = PM[index(causal(r;)]|[index(causal(r;))];
}

}
}

Figure 5.2. Procedure for updating the POSET matrix.

in the matrix. The function first initializes all of the new entries in the matrix to infinity.
A value of infinity means that there is no reordering restriction that applies to this event
pair.

The rest of the algorithm checks the various reordering restrictions and changes the
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values in the matrix accordingly. For each event e; in the POSET matrix, the algorithm
first determines if e; is the causal event to the causal rule r.. If e; is the causal event and
the firing event is not enabled by any rules with a non-empty choice set, then its firing
time determines the upper bound on the firing time of f. over all valid reorderings. This
separation is thus set to the upper bound of the causal rule, u.. If the firing event f.
is enabled by a rule with a non-empty choice set then, the upper bound in the POSET
matrix is set to the upper bound on the causal rule in the constraint matrix. This sets
the upper bound on the firing time of f. to be the latest allowable by the current firing
sequence. Then, the function checks if this event firing could disable a rule that enables
the event in the POSET matrix that is currently being examined, e;. If it does, then f,.
must always occur after e;, and their minimum separation is set to 0, indicating that f,.
cannot occur before e;.

The next step is to check all of the other reordering restrictions. Since the reordering
restrictions are defined with respect to rule firings, the algorithm needs to apply the
reordering restrictions to all of the rule firings that are used to fire the event f.. First,
the algorithm extracts the causal event for the rule that it is considering, e,.. In practice,
it is simple to store the causal event of a rule when it becomes enabled. It then checks to
see if e; is an enabling event of r. If e; is the enabling event of r, then the lower bound on
r must be met for any valid reordering and the lower bound in the matrix is set to —[ if it
is not already less than —[. The event e¢; may also be the causal event of r, and this also
implies the the minimum separation between e; and f. is [. Next, the algorithm checks
for events that are required for an expression associated with r to be satisfied. Any such
events must fire before the causal event, and therefore the minimum separation between
them and the causal event is set to 0. Note that an event can be considered and_context
even if it is associated with an or expression. If the causal event of a rule with an or
expression is its enabling event, then one other event is necessary in order for the or
expression to be true when the rule becomes enabled. This event is and_contezt for the
or rule. For events with or expressions, there is also an opposite restriction. Any events
that would cause the value of the or expression to become true before the causal event
fires must not be reordered to occur before the causal event. Therefore the maximum
separation between e; and e, is set to 0 to ensure that e,.. cannot happen after e;. These
entries in the POSET matrix ensure that none of the timing assignments allowed violate

the reordering restrictions.
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After the new constraints are added, the matrix is recanonicalized, which tightens all
of the separations down to the maximum allowed by the known constraints. Finally, any
events that are no longer relevant to future behavior of the system are removed from
the matrix by the project function. An event can no longer effect future behavior if it is
not causal to any rule currently in the constraint matrix and the direction of the signal
transition no longer matches the current state (a+ no longer matches the current state if
a is low in the current state). The result is a POSET matrix that constrains the minimum
and maximum separations between events to bounds that are implied by the causality in
the firing sequence. Once this new POSET matrix is computed, it is used to update the
constraint matrix, as described in the previous chapter.

This algorithm extends the benefits of POSET timing to specifications with level
expressions. The additions that are necessary to support levels do not add significantly
to computation time, since they simply consist of determining causality and context
relationships. When TEL structures are limited to simple and or or terms, these
relationships can be determined by checks that occur when a rule becomes enabled, and

require very little computation time.

5.5 Example

Figure 5.3 shows the application of the POSET algorithm applied to the TEL structure
fragments at the top of the figure. Initially, assume that a4+ and v+ fire at the same time
and that the value of all signals other than a+ and v+ are false. Text between the
matrices shows the currently firing event, the firing sequence, the causal event, and which
events, if any, are and_context and or_context. Rule firings are not shown in these firing
sequences since each event is enabled by a single rule, whose firing immediately precedes
the event firing. Two versions of the POSET matrix are shown after each firing. The
first shows the matrix after the algorithm sets the constraints but before it has been
recanonicalized and extraneous events have been projected. The second column shows
the matrices after they have been recanonicalized and projected. This distinction is made
to show which separations are set explicitly by the algorithm and which separations are
determined by the recanonicalization process.

The first event to fire after the initial events is z+. The rule enabling z+ has a level
expression of true, so none of the extra conditions added by this chapter are used. The

maximum separations between x+ and its causal event v+ is set to 5, the maximum
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Figure 5.3. Example for POSET algorithm with levels.
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bound on the rule connecting them. The minimum is set of -1, which is the minimum on
v+ — x+. The other separations are left unconstrained and set to infinity, as indicated
by a dash (—). After the matrix is recanonicalized, the “—” entries are constrained
down to the maximum allowed by the other entries. The recanonicalized matrix shows
that z+ fires 1 to 5 time units after a+. Next, y+ fires. Its enabling rule also has
no level expression, so the additional restrictions are not used. The resulting POSET
matrix shows that £+ and y+ can fire in either order in the POSET defined by this firing
sequence since z+ is allowed to fire up to 4 time units after y+ and y+ is allowed to fire
up to 4 time units after z+. The firing of y+ is causes the next firing, b+. This event
is enabled by a rule with a boolean expression and is used to illustrate the additional
reordering restrictions. Since y+ is causal to b+ the maximum separation between y-+
and b+ is set to 10. There are also two and_context events, a+ and z+. These events
must occur before y+ to ensure that it remains causal. The matrix indicates that the
firing of a+ is already restricted to fire before y+ since PM [a+][y+] is set to -1, but the
separation between z+ and y+ needs to be restricted. The matrix that is created after
the firing of y+ shows that z+ and y+ can fire in either order and the firing of x+ is
allowed to occur up to 4 time units after the firing of y+. After b+ fires, the entry in
the matrix PM[z+][y+] is changed from 4 to 0, indicating that z+ is no longer allowed
to fire after y+. Minimum separations are also added to the matrix between y+ and
b+ since y+ is causal to b+, and a+ and b+ since a+ enables b+. After the matrix is
recanonicalized, the unconstrained entries are filled. Notice that the minimum separation
between z+ and b+ is 2, which is the minimum bound of the rule enabling 4. This
occurs because z+ is not allowed to fire after y+ and y+ must occur 2 time units before
b+. This illustrates how the restrictions added for context events ensure that they fire
early enough. The next two event firings, w+ and z+ are similar to the firing of b+, they
have a single literal in their level expressions and their enabling events are and_context.
The final firing, a—, is different since its enabling rule has an or expression. Its causal
event is w+. Its enabling event, b+, is and_context since it must fire before w+, and z+
is or_context since it must fire after w+. The entries in the matrix must be set so that
this is the case. The minimum separation between b+ and a— from the previous firing is
already 3 so it does not need to be changed. After the previous firing w+ is allowed to
fire after z+ since PM[w+][z+] is 4. After the firing of a—, this separation is set to 0.

Minimums are also set between the events a— and w+, and the events a— and b—. After
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recanonicalization the unconstrained entries are filled in and entries concerning a+ are

removed since it no longer matches the value of the signal a after the firing of a—.

5.6 Summary
The algorithm presented in this chapter allows for very expressive specifications to be
analyzed using POSETS. Its description is quite complex, but the extensions add only
minimal overhead to the algorithm. All of the computations necessary to extend the
algorithm are done in constant time by storing relevant information when it is available.
Since TEL structures with levels allow for circuits to be expressed more compactly,
the extensions presented in this chapter significantly improve the performance of the

algorithm.



CHAPTER 6

OPTIMIZATIONS

Show me a thoroughly satisfied man, and I will
show you a failure.
- Thomas A. Edison

There are a number of optimizations to the POSET algorithm developed in the last
two chapters that can reduce the number of geometric regions generated and decrease
state space size. This chapter introduces five optimizations: subsets, supersets, untimed
rules, merge, and interleaving. The first two optimizations, subsets and supersets, reduce
the number of regions generated by checking if the current region contains or is contained
in a region that has already been found. The untimed rule optimization reduces the
number of regions generated by eliminating rule firing interleavings with rules that have
a [0, 00] bound. The merge optimization reduces the number of untimed states found by
considering markings equivalent if they would be equivalent in a Petri net. The interleav-
ing optimization reduces state space size by eliminating some interleavings between rule
firings from consideration. These optimizations significantly increase the size of examples

that the algorithm can analyze.

6.1 Subsets

The simplest optimization is to check for subsets when checking to see if a region has
been explored already. If a region is a subset of a region that has been explored, then
all of its possible future behaviors are explored by the exploration of the larger region.
Any exploration starting from the smaller region generates redundant regions. Checking
for a subset can be done simply by checking to see if all of the entries in one matrix are
smaller than their counterparts in the other matrix.

Some examples of region matrices are shown in Figure 6.1. The region in Figure 6.1(b)
is a subset of the region in Figure 6.1(a) since all of the entries in Figure 6.1(b) are

smaller than their corresponding entries in Figure 6.1(a). The matrices in Figure 6.1(c)
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Figure 6.1. Region matrices.

and Figure 6.1(d) are not subsets of the matrix in Figure 6.1(a) since they both have at

least one entry that is larger than its counterpart in Figure 6.1(a).

6.2 Supersets

An optimization is also made when the current region is a superset of a region that is
already in the state space. Suppose that region M; is a superset of region My, and that
region My is found first. When the algorithm finds M; and compares it to My it finds that
all of the entries in M; are larger than their corresponding entries in My. When M is
stored in the state table, M2 can be removed since M; represents all timing assignments
that are allowed by M;. This saves memory in representing the state space and may
also save some time since there are fewer regions in the state space to compare against
when a new region is found. There is also likely to be a set of unexplored firings on the
stack that are placed there when Ms is the current region. Since M, is a superset of My,
all of the unexplored firings placed on the stack when M, is the current region are also
generated by M;. The extraneous stack element created when M, is the current region
can be removed once the algorithm finds M;. This part of the optimization saves memory
by reducing the size of the stack. However, it can increase runtimes when the stack is
large since it requires examining the entire stack when each new region is generated.

Figure 6.1 is also used to illustrate which regions are supersets. As discussed earlier,
the region in Figure 6.1(b) is a subset of the region in Figure 6.1(a) so it cannot be a
superset. The region in Figure 6.1(c) is a superset of the region in Figure 6.1(a) since all
of its elements are greater than or equal to the corresponding element in Figure 6.1(a).
The region in Figure 6.1(d) is neither a subset nor a superset of the region in Figure 6.1(a)
since it has one element which is larger than the corresponding element in Figure 6.1(a),

(M[r1][r3]) and one element which is smaller, (M[r3][r1]).
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Figure 6.2. Merges.

6.3 Untimed Rule Optimization

If a rule has a timing bound of [0, 00| it is referred to as an untimed rule. Untimed
rules enforce ordering between events but they do not specify any timing. An untimed
rule is always satisfied as soon as it is enabled since its lower bound is 0, and it never
restricts the firing times of other enabled rules since its upper bound is co. Since untimed
rules do not effect the firing times of other rules and are always satisfied as soon as
they are enabled, they do not need to be included in the geometric region. When the
untimed rule optimization is applied, entries for enabled untimed rules are not placed
in the geometric region. The algorithm usually computes the list of rules that can fire
by determining which rules represented in the current geometric region are satisfied.
Therefore, this optimization requires that the algorithm also check the set of untimed
rules to determine if any are enabled and add those that are to the list of rules that can
fire. This optimization makes the regions smaller in specifications with many untimed
rules and it can also make the state space smaller since regions which are generated by

different interleavings of untimed rule firings are not distinguished.

6.4 Merge

The next optimization deals with merges, which are used in a specification to represent
disjunctive or causality. Figure 6.2 shows examples of merges using a TEL structure and
using a Petri net. In both cases, either the firing of a— or b— causes the firing of c¢—.
Both specifications require that the firings of a— and b— are mutually exclusive. This is
indicated explicitly in the TEL structure with the conflict and implicitly in the Petri net

by the assumption that the net is one-safe.
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When the algorithm is exploring the state space it compares the current set of enabled
rules against the sets of enabled rules that have already been found and stored in the
state table. If the sets of enabled rules are different, the algorithm assumes it has found a
new state. State space exploration algorithms for Petri nets perform a similar operation.
They check to see if the current marking has been found before, and if it has not they
assume they have found a new state. Most of the time a rule in a TEL structure has a
corresponding place in a Petri net. However, when the specification contains merges this
is not the case. Figure 6.2(a) has two rules, while Figure 6.2(b) has only one place. An
algorithm exploring the state space for a TEL structure finds a different set of enabled
rules depending on whether a— or b— fired, but the algorithm exploring the Petri net finds
the same marked place regardless of whether a— or b— fires. This may cause an algorithm
which explores Petri nets to perform better than the POSET algorithm described in this
thesis since the POSET algorithm has to find many more untimed states.

Fortunately, merges which correspond to Petri nets can be detected during state space
exploration. If the current set of enabled rules differs from a set in the state space only
by differences in a merge, the two sets of enabled rules can be considered equivalent.
Figure 6.3 shows the algorithm for performing this check. It determines if the two rule
sets it is given, R; and Ry, are equivalent. When used in state space exploration, one
of the rule sets is the current set of enabled rules and the other is a set of enabled
rules in the state table. The algorithm tries to match every rule in R; to exactly one
corresponding rule in Ry. It first checks whether the rule sets are the same size. If they
are not, then there is not a one-to-one match and the function returns false. Then, it
checks to see if the rule ry € Ry is in Ro. If it is, the algorithm moves on to the next
rule. If r; is not in Ry the algorithm checks if there are any rules in Ry that share the
enabled event of r1, f, and have enabling events that conflict with r;’s enabling event, e.
When the algorithm finds such an event, its sets found to true and continues to search
all of the rules in Ry. If it finds another match, then the merge is not a simple Petri
net-like merge. It is a more complex structure that cannot be translated into a Petri net
without creating additional places and transitions. When this kind of merge is detected,
the algorithm returns false, indicating that the rule sets are different. If the algorithm
searches through all of the rules in Ry and cannot find a match, the the algorithm also
returns false since there is no match to the rule from R;. If all of the rules in Ry can be

matched to exactly one rule in Ry, the algorithm returns true. This algorithm does add
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Algorithm 6.4.1 (Determine if two set of rules are equivalent)
bool merge_match(rule set Ry, rule set Ro){
if(|R1| # |R2|) return false;
forall (r; = (e, f,1,u,b) € Ry){
if (r1 ¢ Ry) then
bool found = false;
forall ((¢/, f,1,u,b) € Ry){
if (e#te’ A —found) then
found = true;
else if (e#e¢' A found) return false

if (found = false) return false;

}
}

return true;

}

Figure 6.3. Procedure for matching two rule sets.

some a slight amount of overhead (< 1%) to the algorithm, but for specifications with
many merges, it significantly reduces memory consumption and runtime.

In order to get the full benefit of this optimization, regions need to be checked for merge
equivalence as well. Without this optimization, regions are only considered equivalent
if they represent age differences between the same set of enabled rules. However, with
the optimization, if two sets of enabled rules are determined to be equivalent by the
matching algorithm, then rules in the region can be matched as well. If region M;
contains rule r1 = (e, f,l,u,b) and region My contains rule ro = (¢, f,1,u,b) and e#te’,
then M; can be compared to My by substituting r; for ro when doing the age comparisons.
This optimization prevents state space exploration using TEL structures from performing

worse than state space exploration using Petri nets on specifications with many merges.

6.5 Interleaving
The previously described optimizations change the way the algorithm determines if
two states are the same. This optimization reduces the state space by preventing certain
redundant timed states from being generated by removing certain interleavings between
rule firings from consideration. The purpose of exploring different interleavings between

rule firings is to ensure that all possible causal rules for each event firing are explored.
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Figure 6.4. Example of interleaving optimization.

If two different rule firing interleavings result in the same causal rule for a given event
firing, no additional information is generated by exploring both of them, due to the way
the POSET algorithm generates POSET matrices. When information on a new event, e,
is added to the POSET matrix, the causal rule determines the upper bound on the time
separation between the firing of e and its causal event. If the causal rule has no level
expression, two firing sequences with the same causal rule for e always result in the same
time separations between the firing of e and the other events in the matrix.

Consider for example, the TEL structure in Figure 6.4. Initially, the firing sequence
r1,e1 has been explored. Since there are many possible interleavings between the firing
of r4 and the firing of the other rules in the TEL structure, it reduces execution time if
only one interleaving where r4 is causal to eq is explored. Figure 6.5 shows the POSET
matrices generated as e4 fires when each of the rules enabling e4 is causal. The POSET
matrices show that when r4 is causal to ey4, it generates a unique matrix that is not
a subset of the matrices generated when the other rules are causal. The matrix in
Figure 6.5(a) is the matrix generated whenever r4 fires last, regardless of whether r4 is
enabled first or last. For example, the firing sequences r1, ey, 73, €2, 73, €3, 76,75, T4, €4 and
r3,€3,T9,€9,T1,€1,75, 76, T4, €4 result in the generation of the same POSET matrix. Since
there are multiple firing sequences where r4 fires last, this POSET matrix is generated
multiple times when all rule firing interleavings are explored. Additionally, since a
different geometric region is generated for each rule firing interleaving, many additional

geometric regions are generated by exploring all of the rule firing interleavings which are
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POSET matrix: r4iscausa POSET matrix: r5is causa POSET matrix: r6 is causa

el e2 e3 o el e e3 o el e2 e3 o
el 0 5 5 -2 el 0 5 5 -2 el 0 5 5 -2
e 5 0 5 -2 e2 5 0 5 -2 e 5 0 5 -2
e3 5 5 0 -2 e3 5 5 0 -2 e3 5 5 0 -2
4 3 8 8 O e4 8 3 8 O 4 9 9 4 0

(@) (b) (©

Figure 6.5. POSET matrices with various causal places.

going to create the same POSET matrix. In order to reduce the number of interleavings
explored, the algorithm should only generate the POSET matrix in Figure 6.5(a) once,
and not explore the other rule firing interleavings that lead to it.

The difficulty is deciding when a rule can be fired without interleaving it with other
token firings, and when it must be interleaved so it has a chance to be causal. In general,
solving this problem could involve examining the entire firing sequence that has been
explored so far. However, in certain cases, interleavings can be eliminated by a structural
examination of the TEL structure. It is difficult to do this analysis for events which are
enabled by rules with non-empty choice sets or boolean expressions, therefore, if a rule
r, enables an event e which is enabled by a rule with a non-empty choice set, firings of r
are always interleaved. Also, if r has a boolean expression, r is always interleaved.

The goal of the optimization is to generate only one POSET matrix per causal rule.
One way to do this is to stipulate that a rule can only fire last if it is enabled last. If a
rule, r, is enabled while other rules that enable r’s enabled event are not enabled, then
it is always fired as soon as a region is created that allows it to meet its lower bound.
Firing sequences where it fires later than this are not considered. If all of the rules that
enable an event are enabled last in some firing sequence, then this produces exactly one
firing sequence where each rule is causal. This is the case in the example in Figure 6.4,
since each token can be created last in some firing sequence. If this method is used on
the example in Figure 6.4, firing sequences where r4 is causal and receives its token last
such as: rs,es, ro,e2,71,€1,75,76,74, €4, and 73, €3,79,€9,71, €1,76, 5, T4, €4, are explored.
The firing sequence 1, e1, 79, €2, 73, €3, 75, €5, T'4, €4 and any other firing sequence where ry4

is causal and does not receive its token last are eliminated. When rule r4 is enabled and
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135 €0 [0,2]
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[0,2]
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[0,20] [2’r35] r£32,4]
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Firing sequence: €0, r1, el

Figure 6.6. TEL structure where p4 cannot be created last.

Restricted POSET matrix:
r4iscausa and el firesfirst

el e e3 e
el 0 5 5 -2
e2 5 0 5 -2
e3 5 5 0 -2
4 3 3 3 O

Figure 6.7. A restricted POSET matrix.

other rules which enable e4 are not, the rule ry4 is fired as soon as ¢4 can reach age 2, its
lower bound. This approach produces a correct result for this example. However, if the
timing bounds are changed to those in Figure 6.6, r4 cannot be enabled last, but it can
fire last. Clearly, in this case, a part of the state space is eliminated if the firing of r4 is
not interleaved and a firing sequence where 74 is causal is never explored. This indicates
that there are some cases where the optimization cannot be made.

In order to make the optimization in the algorithm, it is necessary to determine under
what circumstances a rule can be enabled earlier than the other rules and still add new
behavior when it is causal. POSET matrices contain timing assignments for all of the
valid reorderings of the firing sequence being explored. The set of timing assignments

allowed by a particular set of reorderings can be found by restricting the POSET matrix
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in a way that forces events to fire in the desired order. This illustrates which firing
sequences are responsible for which timing assignments allowed by the POSET matrix.
Figure 6.7 shows a restricted POSET matrix for the TEL structure from Figure 6.4. The
rule 74 is causal to e4 and the matrix is restricted so that e; must fire before ey and ez, by
placing zeroes in the first row. This restriction implies that only firing sequences where 74
is enabled first are represented. This POSET is a subset of all of the POSETs shown in
Figure 6.5, which indicates that the set of timing assignments allowed when r4 is enabled
first and is causal are also allowed when any of the other rules are causal and when ry is
enabled later and is causal. Therefore, it is not necessary to explore the firing sequence
where r4 is enabled first and is causal. The firing of r4 does not need to be interleaved
when it is enabled first because the upper bound on ry4 is less than or equal to the upper
bounds on the other two rules that enable ¢4 in Figure 6.4. In Figure 6.6, 4 does need to
be interleaved since its upper bound is greater than the upper bound of the other rules
that enable e4.

To generalize, consider a rule r with bounds [, u], which enabled event e. The event
e is enabled by a set of rules {ry,...,m,}, all of whose upper bounds are greater than or
equal to u. Now, assume that r is enabled at time §, and r is causal to e in the current
firing sequence. This means that event e fires no later than § 4+ u. All of the the rules
that enable e and are not enabled when r becomes enabled are enabled either at time §
or some time later. Since e fires no later than § + u, the maximum clock age for a rule
that is not enabled when r becomes enabled is u or less. All r; € {r;...r, } have maximum
bounds which are greater than u, therefore their clocks cannot exceed their upper bounds
when r is causal and becomes enabled earlier. Any of the rules that are not enabled
when r becomes enabled can be fired after r without exceeding their upper bounds. If
any of these rules fires after r, then r is not causal. Therefore, the clocks for rules that
are not enabled when r becomes enabled do not reach any values that are not guaranteed
to be allowed by a firing sequence where 7 is not causal. Rules that are enabled when r
becomes enabled may have clocks that exceed their upper bounds. However, these clocks
have even larger values in sequences where a rule that is not enabled is causal to e. This
means that as the algorithm is exploring a firing sequence o where r has become enabled
before the other rules that enable e, any region that is generated by a continuation of
o where r is causal to e is a subset of a region created by a firing sequence where r is

not causal to e. Thus, the algorithm does not need to explore continuations of o where
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r is causal to e, and it does not need to interleave the firing of r with all the other rule
firings to ensure that it has a chance to be causal. In specifications containing events
that are enabled by a large number of rules, this optimization can produce a significant
reduction in runtime. It also produces a significant reduction in the number of geometric
regions generated since a new region is generated for every rule firing interleaving, and

the optimization reduces the number of rule firing interleavings.

6.6 Summary
A large number of the regions that are generated by the unoptimized POSET algorithm
are redundant. These redundant regions significantly reduce the size of the specification
that can be analyzed. The optimizations presented in this chapter remove most of these
redundant regions and result in significant performance improvement. The next chapter

describes how the regions can be stored more compactly to save memory.



CHAPTER 7

IMPLICIT METHODS

The biggest difference between time and space
1s that you can’t reuse time.
- Merrick Furst

Memory is often the limiting factor when attempting to synthesize or verify a timed
system. Even though the POSET algorithm dramatically reduces the number of regions
generated, the algorithm still requires a great deal of memory for large, complex speci-
fications. The optimizations discussed in the previous chapter address this problem by
reducing the number of regions generated, reducing the size of the regions generated, or
reducing the size of the stack. To further reduce the amount of memory needed, implicit
methods can be used to more efficiently represent the state space. This chapter describes
a method for representing geometric regions using implicit methods, first presented by
Thacker in [66, 65], which significantly increases the size of specification that can be

analyzed.

7.1 Representing Geometric Regions

Much of the data compiled during state space exploration consists of bit vectors.
Therefore, Bryant’s binary decision diagrams (BDDs), which are a highly efficient method
for storing and manipulating Boolean functions[16] are used to represent the untimed
states. Geometric region information is integer-valued and standard BDDs can only
represent binary data. Therefore multi-terminal binary decision diagrams MTBDDs are
used to store the region matrices. MTBDDs are a type of BDD which allow terminal
nodes to contain data, rather than just the constants TRUE and FALSE. Geometric
region matrices only have entries for currently enabled rules. However, to make the
representation more manageable, when BDDs are used, the matrices are expanded to a
canonical form, where rows and columns representing rules that are not enabled have

been filled with a “not an entry” symbol, the constant FALSE. MTBDDs collapse paths
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with common structural features to the fewest nodes possible. In addition, because of the
nature of BDD implementations, it is possible for separate geometric regions with similar
structures to have common subregions stored in the same memory location.

The first step in building an implicit representation is to use BDDs to store the bit
vector that indicates which rules are in R,,, (the set of rules whose enabling events have
fired). To accomplish this, an atomic BDD is allocated to represent each rule. These
BDDs are assembled into the array m = (my,...my,), where n is the number of rules in
the TEL structure. An atomic BDD is one which represents a single variable. As shown
in Algorithm 7.1.1, a new BDD, £, is created with the value TRUE. Each member of the
rule set R is then considered. If that rule is a member of the R,, set, the corresponding
m; BDD is added to §, otherwise the complement of the appropriate m; BDD is added.
The resulting BDD uniquely represents the R,, set. In a TEL structure with four rules,
where R = {r1,79,7r3,74}, m = (my,mg, m3, myg), and R, = {r1,r3}, (meaning that rules
1 and 3 are enabled, but rules 2 and 4 are not,) the implicit representation of the set
of enabled rules would be composed of the product my A s A mg A Tz and is shown
in Figure 7.2(a). (Note that BDDs as shown are drawn to be relatively readable, and
do not necessarily indicate the actual node ordering or machine representation of these

structures.)

Algorithm 7.1.1 (Extract R,, BDD)
bdd FindR,, BDD(rule set R, rule set R,,, bdd array m) {
bdd 3 = TRUE
foreach (r; € R)
if (r; € R.y,) then

B = B Amli]
else
B =B A-mli]
return 3

}

Figure 7.1. Function to extract a BDD for the rule set R,,.

It is also necessary to store the list of regions associated with each R,, set. To represent
this list structure, a numerical index 7 is used to indicate that a given matrix is the 7
matrix associated with a given R, set. Any number i can be viewed as a bit vector

i = (9, ..., in ), Where ig is the low order bit of the binary representation of i, and i, is
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Figure 7.2. MTBDD representation of (a) R, (b) the number “2”, and (c) a geometric
region matrix.

the high order bit. A set of BDD variables is used to represent the binary value of i,
and a number BDD is constructed in a manner analogous to that used for the R,, set.
For instance, the BDD shown in Figure 7.2(b) represents the number “2” in a four-bit
notation. Numbers of this form are used to create a dynamically sized array of matrices.
In order to conserve space, precisely enough bits are used to represent the largest number
currently needed.

A matrix with integer entries can be viewed as a function (N x N — Z), which takes
row and column indices and returns the appropriate matrix entry(M(r,c) = M,.). A
square matrix can also be viewed as a function from boolean values to integers, {0, 1}" x
{0,1}" — Z. The row and column indices of the geometric region matrices are thus
parameterized. Each is represented as a boolean vector 7 = (rg,r1,7r9,...,7y) Or € =
(co,c1,Ca,...0n), so the function can be viewed as M (7, ¢) = M,.. MTBDDs presented by
Clarke in [24] are an ideal way to represent this type of function. BDDs are constructed
for each necessary row and column index, and stored in arrays r and c¢. The BDD for the
i" column index is stored in c[i] and the BDD for the i""row index is stored in r[i]. For
example, r[3] represents the value “3” using a set of variables which indicate that it is a
row index. Each augmented matrix is then transformed into a MTBDD. Figure 7.3 shows
the algorithm used to accomplish the transformation. First, § is initialized to FALSE.
Then each matrix location is considered in turn. If that location is not tagged as “not
an entry”, the BDD « is set to represent the appropriate indices and a terminal node
is created with the proper value. The entry is then inserted into the matrix BDD using

the ITE operator. This operator takes three parameters: the first must be a normal
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BDD, and the others may be either MTBDDs or normal BDDs. The effect of the call
ITE(a,7y, ) is to take all paths in o which lead to TRUE and link them to 7, and all
paths in « that lead to FALSE and link them to 3. (This is equivalent to the operation
(¢ Ay) V (ma A B) if all parameters are normal BDDs.) Since any path not leading to a
valid terminal ends in FALSE, there is no need to explicitly link “not an entry” locations.

Figure 7.2(c) shows the MTBDD representation of the following matrix:

0 20 =z 15 =«
-2 0 z -2 z
r T T T X
0O 5 =z 0 =«

Since rows 2 and 4 and columns 2 and 4 are filled with “not an entry” (and since there is
no row or column 5, 6, or 7), the BDD representation truncates those paths with FALSE
as soon as possible. Matrices represented in this form can be compared for equality by

checking to see if they are the same MTBDD, which is a simple pointer check.

Algorithm 7.1.2 (Construct Matrix MTBDD)
mtbdd MakeMatrizBDD (int n, matriz M, bdd vector r, bdd vector c) {
mibdd § = FALSE
forall (1:0<i<n)
forall (:0<j<n)
{

if M[i,j] # “not_an_entry” then

bdd o = r[i] A c[j]
mtbdd vy = terminal(M|i, j])
0 =ITE(x,,p)
}
}

return 3

}

Figure 7.3. Function to create a MTBDD for the matrix M.

A timed state is represented by a composition of BDDs, one for the R,, set, another
for the list index, and a third representing the geometric region matrix. Figure 7.4 shows

the complete MTBDD for the timed state where R,,, = {r1,r3}, the link value is 2, and



Figure 7.4. MTBDD representation of a timed state.

94
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the region is the one shown in the above matrix. When a new timed state is found, the

timed state list MTBDD Ty is extended by the call
Ts = ITE(FindR, BDD(R, Ry, m) A i, MakeMatrizBDD(n,M,r,c),Ts),

where ¢ is the list index BDD for this region. Since list indices are kept as small as
possible, a size check is made before adding this region to the array. If necessary, an
extra bit (leading zero) is added to existing entries to accommodate the new growth.
As shown in Figure 7.5, the index numbers are dynamically grown as the list lengthens.
Index bits which do not appear in the figure are don’t cares, so matrix “zero” as shown
in Figure 7.5(a) also appears as every even numbered matrix. Since the list is always
traversed in order, the array is FALSE terminated (much like a C string) so that the end
of the array can be detected by the algorithm. When inserting matrix “one”, the existing
structure is first restricted to require a two bit “zero” and then matrix one is ORed in,
resulting in the structure shown in Figure 7.5(b). Note that adding a third matrix (as
shown in Figure 7.5(c)) does not require the use of an additional bit, but adding a fourth

matrix would result in a five element list, (including the terminator) requiring three bits.

7.2 Representing the Reduced State Graph

The goal of state space exploration for synthesis is to find all of the boolean states
of the system and the possible transitions between them. This information is necessary
in order for asynchronous logic synthesis algorithms to generate a circuit from the state
space, and it must be stored in addition to the region MTBDDs during state space
exploration. This set of reachable states and transitions is referred to as the reduced
state graph, or RSG. To store the RSG, a pair of BDDs, ® and I', are constructed as
the space is explored. The BDD @ is the characteristic function representation of the
reachable untimed states. The state vector § = (sg, s1,...) represents the binary values of
the signals in a given state. These variables may take on any one of the following values:
0 denotes a stable low signal, R denotes a signal enabled to rise, 1 denotes a stable high
signal, and F' denotes a signal enabled to fall. As each new untimed state is found, a
BDD s, which represents the current signal values, is constructed in a fashion similar to
that used for the R, set. ®, which represents the total state space, is then extended by
taking the logical OR of the current state and the current value of ® (& = &V s). For
example, the RSG shown in Figure 7.6(a) shows the reachable state space for a circuit

with three signals, a,b, and c¢. Figure 7.6(b) shows the BDD for the initial state RRO0,
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Figure 7.5. A false-terminated array holding (a)one, (b)two, or (c)three matrices.

Figure 7.6. (a) A reduced state graph (RSG), (b) a BDD for the state RR0, and (c) the
characteristic function BDD (S) for the state space.
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and Figure 7.6(c) shows the characteristic function BDD @ for this state space. All
states are reachable except for F01. T is the characteristic function representation of
the transition relation and is constructed in an analogous manner. Each pair of states
(s,s') is represented by a pair of vectors § and 5_7, which indicate the values of each signal
in the two adjacent states joined by a transition. A complication arises from the use
of timing information in the exploration of the state space. When the timing analysis
shows a state to be unreachable, it is not included from the state space. If these states
are ignored the signal enablings leading to each of them would be lost. Because timed
circuit synthesis is highly dependent on this information, circuits derived from such a
state space would be suboptimal and possibly incorrect. To prevent this situation, a
transition is inserted into N for every enabled signal, even if this is a “ghost” transition
leading to a timed unreachable state. Construction of an implicitly represented reduced
state graph in this way, not only reduces memory consumption, but also allows implicit

methods to be applied to logic synthesis [66].

7.3 Summary
Representing the timed state space using implicit methods typically produces very
significant memory savings when applied to large examples. However, since the core of
the algorithm still operates on explicit matrix representations it requires a translation
from an explicit matrix to an MTBDD every time a state is stored in the state table.
This produces a large amount of runtime overhead and the BDD optimization degrades
runtime. It is most useful for large examples which run out of memory using the explicit

approach.



CHAPTER 8

VERIFICATION

Testing can prove the presence of bugs, but
never their absence.
-Edsger Dijkstra

Timing verification is essential in order to successfully design a timed system. Even
when timing information is designed in from the beginning, it is necessary to verify that
the physical implementation meets the requirements of the specification. State space
exploration is the core problem in timed system verification, which makes the POSET
algorithm directly applicable to verification. However, one element is missing. The TEL
structure specification language defined in Chapter 2 does not provide a way to define
properties to be verified. This chapter presents a method for property specification, and
formally defines the set of sequences for which verification succeeds and fails.

Many logics have been developed to specify temporal behavior of untimed concurrent
systems, such as LTL presented by Pnueli [56] and CTL presented by Browne [14], Dill [30]
and Clarke [23]. The logics for untimed concurrent systems do not deal with concrete
time values. For example: a occurs implies that eventually b occurs can be specified,
but a occurs implies that b occurs before 10 time units cannot be specified. Since these
logics do not deal with concrete timing bounds, any properties that can be specified
using them can be checked after the timed state space is found by examining the reduced
state graph. This graph contains all reachable boolean states and all possible transitions
between them, and therefore completely describes the untimed behavior of the system.
Although ATACS does not currently contain a facility to check LTL or CTL formulas
against the state graph, Burch presents an algorithms exist to do so in [17].

The problem of specifying and checking concrete timing bounds is more complex.
Concrete timing requirements cannot be checked by an examination of the reduced
state graph since it does not contain concrete timing information. Concrete timing

requirements could be checked by examining the state graph along with the regions
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Figure 8.1. Example of a constraint rule

generated for each state, but the information is more accessable during state space
exploration. Methods have been proposed for the specification of verification properties
with concrete timing bounds including complex and expressive temporal logics such as
Alur’s TCTL [2], Yoneda’s TNL [73], Alur’s MITL [4], and Alur’s TPTL [5]. The POSET
algorithm could be used to verify properties expressed using these logics. However,
it would require significant modification and would add complexity and overhead to
the process. Additionally, one the of goals of this thesis is to produce a specification
method that is accessible to circuit designers. Logics such as TCTL, TNL, MITL, and
TPTL require a significant amount of mathematical understanding in order to use them
effectively. Therefore, we choose an approach that is simpler and less expressive, but

easier to understand.

8.1 Constraint Rules
Verification properties are specified using a set of constraint rules: C C E x E x N x
(MU {x}) x (b:{0,1}¥ — {0,1}). These constraint rules are similar to the constraint
places described by Rokicki in [58]. Constraint rules never actually fire and they never
appear in a firing sequence. Instead, the constraint rules are checked each time a rule or
event is added to the firing sequence. Failures caused by constraint rules arise due to two

conditions:
1. An event fires and any constraint rule enabling it is not satisfied.

2. A firing results in a sequence which can be given a timing assignment which causes

the clock on a constraint rule to exceed its upper bound.

Figure 8.1 shows a TEL structure fragment which contains a constraint rule. This rule

requires that the TEL structure must meet a number of requirements. The first require-
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ment is that ¢+ must fire no more than 10 time units after the rule (b+,c+,3, 10, [e])
becomes enabled. If ¢+ can ever fire later than this, the age of the constraint rule exceeds
it upper bound and causes a failure. The next requirement is that b+ must fire at least 3
time units before ¢+ fires, and the signal e must be high at least 3 time units before c+
fires. These conditions are necessary in order for the constraint rule to be satisfied when
c+ fires. If the constraint rule were disabling, then the rule would also require that e must
remain high from the time it rises to the time that ¢+ fires. This single constraint rule
specifies a rather complex set of behavior requirements. Constraint rules, especially when
combined with the ability to specify sequencing events, provide a reasonably powerful way

in which to describe the behavior to be verified.

8.2 Success and Failure Sequences

In [27, 29], Dill presents a method for verifying speed independent circuits using trace
theory. This approach is based on dividing the set of possible execution sequences allowed
by the specification into a failure set, F', and a success set, S. The method is extended
to work with timed specifications by Burch in [18, 19]. In this method, explicit time
advancement events are included in the specification and in the execution sequences.
This allows concrete time properties to be verified with trace theory. This section adapts
the trace theory concepts to firing sequences and the continuous time model that is used
throughout this thesis.

In order to describe how trace theory can be applied to firing sequences, we must first
formally define the behavior of constraint rules. The first definition concerns constraint
rule enablings. Although constraint rules never fire, they are enabled in the same way as
standard rules. A constraint rule » € C' is enabled in o, if it satisfies Definition 2.2.3.
Since constraint rules do not appear in the firing sequence, and therefore cannot be given
an explicit timing assignment, the definitions concerning their timing behavior differ from

the definitions in Chapter 2 which concern standard rules.

Definition 8.2.1 A rule r = (e, f,l,u,b) € constraint_satisfied(r, oq_,) iff:
r € CAr € enabled(og ) A (T(0n) — T(Ep(r,00. ) > 1)

This definition states that the constraint is satisfied by firing sequence og, , and timing
assignment 7 if 7 causes the constraint rule to become enabled at least [ time units before

the last firing in the sequence. The next definition deals with the upper bound on the
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constraint rule.

Definition 8.2.2 A rule r = (e, f,l,u,b) € constraint_expired(r, 0. ,) iff:

r € C Ar € enabled(og.n) N (7T(0p) — T(Ep(r,0)) + maz_advance(og n, T) > u)

This definition states that the constraint is exceeded by firing sequence ¢ and timing
assignment 7 if 7 allows the age of r to exceed u before another rule or event is forced to
fire. These definitions are sufficient to define the a set of failure sequences.

There are are four conditions that place a firing sequence in the failure set, F'. They
are first described informally, and then presented formally below. The first condition
that causes a failure is that the age of any clock associated with a constraint rule exceeds
its upper bound. This indicates that an event has not fired soon enough. The second
condition is that some constraint rule with e as an enabled event is not satisfied when
e fires. If this condition occurs, an event is firing too early. The third condition is that
a disabling rule becomes enabled and then loses its enabling. This indicates a hazard in
the circuit. The final condition is that a finite firing sequence is generated from a cyclic
specification. This indicates a deadlock.

We can now formalize the definition of the failure set, F. The null firing sequence,
containing no firings, is in S. Therefore, there is a prefix of every sequence that is not in
F. The failure set can be described by defining which firings, when added to a sequence
o € S cause the resulting sequence and all extentions of the resulting sequence to be in

F.

Definition 8.2.3 Assuming that 0., € S, 00.n+1 € F and 0. n1+1(E|R)* € F iff one of
the following conditions holds:
1. 31 € valid(0g. n+1) : constraint_expired (7, og_n11) # 0.

2. L(op+1) € E A 37 €wvalid(og. py1),r = (e, L(opy1),l,u,b) € R :

r ¢ constraint_satisfied(7, og_p4+1))-
3. Ir= e, f,l,u,b) € R:r is disabling \ r € enabled(og.,,) N =b(d(00..nt1))-
4. firable(og. ni1) = 0 A enabled(og. pni1) = 0.
The first condition states that the addition of any rule or event firing which creates a

sequence which has a valid timing assignment where a constraint rule exceeds its upper

bound is a failure. The second condition is that an event firing causes a failure if any of
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Algorithm 8.3.1 (Check deadlock)
RL=find_timed_enabled (TS, TEL, M);
if(RL = () return fail

Figure 8.2. Check for deadlock.

its enabling rules are not satisfied when it fires. The third condition is that any firing
which causes the boolean expression on an enabled disabling rule to become false causes a
failure. The final condition is that the enabled and firable sets are empty. This indicates
that the sequence ends at 0,11 and is finite.

These conditions completely describe the failure set F'. The success set, S contains
all sequences in ¥ which are not in F' (S = ¥ — F). The state space algorithm can
now be modified to generate a failure whenever a firing causes the generation of a failure

sequence.

8.3 Checking for Failures

The state space exploration algorithm presented in Chapter 3 already checks for one
type of failure, the disabling of a rule when its boolean expression becomes false. It now
needs to check for three more conditions: a deadlock, a rule exceeding its upper bound,
and an event firing with an unsatisfied constraint rule.

Deadlock is the simplest check. The algorithm assumes that the specifications it is
given are cyclic and that a deadlock is always a verification failure. The modification to
the state space exploration algorithm from Figure 3.1 is shown in Figure 8.2. Every time
the algorithm generates a new timed state, it computes the set of rules that are allowed
to fire in that state and places them in RL. If the RL set is ever empty, then no rules
can fire from this state. If a rule cannot fire, an event cannot fire either, since the firing
of an event requires the firing of a rule. Therefore, if RL is empty, the current sequence
has satisfied condition 4 of Definition 8.2.3 and the algorithm generates a fail result.

The modification of the algorithm to check timing violations on constraint rules is
more extensive. Since constraint rules do not fire, they are handled differently than
standard rules. Clocks are created for them, but these clocks cannot be allowed to
constrain the firing times of other rules. The first modification to the algorithm concerns
the find_timed_enabled function from Figure 3.2. This function is modified to prevent

constraint rules from being added to the rule list. The modification, shown in Figure 8.3,
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Algorithm 8.3.2 (Find timed enabled)
rule_list RL find_timed_enabled(R,,, M,TEL(N, so, A, E, R, Ry, #,C)){
for each (r = (e, f,l,u,b) € Rep){
if (min_clock_value(r, M) > 1 Ar ¢ C) add_list(r, RL);
return RL;

}

Figure 8.3. Find timed enabled rules.

simply checks if a rule is a constraint rule before adding it to the rule list. This prevents
constraint rules from firing. The next modification is to the update function. It ensures
that constraint rules do not restrict the firing times of normal rules, and checks that the
timing bounds on constraint rules are always satisfied. The new version of the update
function for the POSET algorithm is shown in Figure 8.4. First, the function updates
the POSET matrix if an event fires. Then it projects the firing rule. Next it checks to
see if any constraint rules have exceeded their upper bounds. If a rule has exceeded its
upper bound, the algorithm generates a failure. It then advances time by setting the
maximum age of all normal rules to the maximum bound on the rule and the maximum
age of all constraint rules to infinity. Setting the maximum for constraint rules to infinity
ensures that these bounds do not constrain the size of the region. The matrix is then
recanonicalized. The next step is to check whether the minimum ages for all constraint
rules which enable the firing event are met. After the minimum age is checked, each

constraint rule which enables the firing event is projected

8.4 Example

Figure 8.5 illustrates the behavior of the new update algorithm applied to the TEL
structure fragment at the top of the figure. Clearly, both the lower and upper bound
on the constraint rule in the figure are violated. The figure shows how the algorithm
determines this. Initially, the POSET contains only a, and the constraint matrix contains
ages for rules (a, b) and (a, c). Since both are enabled by a, their age difference is 0. Since
the maximum age in the matrix for the constraint rule, is 5, in this state it does not
violate its upper bound. The minimum age on the constraint rule, 0, does violate its
lower bound, 5, but this does not generate a failure since the event it enables, ¢, cannot
fire yet. There is still time for (a,c) to reach its lower bound. When b fires, the POSET

is updated to show that b fires between 2 and 5 time units after a. The constraint
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Algorithm 8.3.3 (Update)
void update( TEL structure TEL (N, sg, A, E, R, Ry, #,C) , geometric region M, )
POSET matriz PM, rule r = (e, f,1,u,b), rule set Rey, bool event_fired) {
if(event_fired) then
update_POSET(TEL, PM, M, 7, Ren);
project(M, index(r));
forall(ri = <6i, fi, li, u;, bz> € C){
if (r; € Rep A M[0][indexz(r;)] > u;) then return fail;
forall(r; = (e;, fi, li, ui, b;) € Rep)
if(r; € C) then M[0][index(r;)] = oo;
else M[0][index(r;)] = u;;
}
recanoncalize( M);
normalize( M);
if(event_fired) then {
forall(ri = <€i, £l ug, bz> S O){
if (r; ¢ Ren V M[index(r;)][0] > —I;) then return fail;
project(M, index(r;));
}
}
}

Figure 8.4. Update the region and check constraints.

matrix now contains the constraint rule (a,c) and the normal rule (b,c). When time is
advanced, the maximum age of (b,c) is set to 5, its upper bound. The maximum age
for the constraint rule is set to infinity so that its upper bound does not constrain the
matrix. When the matrix is recanonicalized the constraint rule has a maximum age of
10, and a minimum age of 2. The maximum exceeds its upper bound. The algorithm
detects this and generates a failure. However, in order to illustrate how lower bounds are
checked, suppose that the algorithm continues. When ¢ fires, the maximum age of (a, c)
is now 15 which still violates the upper bound constraint. The rule also now violates its
minimum constraint as well. Its enabled event, ¢ has fired, and its minimum age, 4, does
not reach its minimum bound, 5. Therefore, the algorithm generates a failure here for a
minimum violation. If the algorithm were to continue, the rule (a, c¢) would be projected

from the matrix here since its enabled event has fired.
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Figure 8.5. Example of new update algorithm.
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8.5 Summary

The algorithm does not change significantly when constraint rules are added and
checked. Their maximum ages are set to infinity instead of their upper bounds, and
they must be projected when their enabling event fires instead of being individually fired
and projected. The constraint checks require a simple examination of matrix entries.
Constraint rules do add some overhead to the state space exploration process because
their ages must be computed in addition to the ages of the normal rules. However, they
add no algorithmic overhead and allow for the specification and verification of real time

constraints in a way that is easily understood and used by circuit designers.



CHAPTER 9

RESULTS

In theory, there is no difference between theory
and practice. But, in practice, there is.
-Jan L.A. van de Snepscheut

The POSET algorithm dramatically reduces the number of geometric regions gener-
ated during state space exploration of highly concurrent systems. The new algorithm,
along with the optimizations discussed in the previous chapters, is implemented within
the CAD tool ATACS and produces very good results as illustrated by the examples in
this chapter. Although some examples in this chapter are discussed in the context of
synthesis and others in the context of verification, the same implementation of the POSET
algorithm is used to find the state space of both types of examples.

The first set of results compares the POSET algorithm to Orbits[58] and demonstrates
that the ability to directly analyze specifications with multiple behavioral rules results
in a large performance improvement. The second set of results compares the POSET
algorithm to timing approaches that are not based on geometric regions. These results
show that the POSET algorithm makes the geometric region representation competitive
when delay ranges are small and superior when they are large. The third set of results
presents the impact of the BDD method on runtime and memory usage. It shows that
using BDDs often produces an order of magnitude reduction in memory requirements,
but also can severely impact runtime. The final set of results describes the application
of the POSET algorithm and TEL structures to real world synchronous circuits from the
IBM guTS microprocessor. Two of the examples, are analyzed using both a purely event
based specification and a mixed level and event based specification. Results on these ex-
amples indicate that the more concise, level based representation produces a performance
improvement. We believe that these results show that the algorithms developed in this
thesis are not only useful for the analysis of asynchronous circuits, but also for any high

performance circuit where aggressive timing assumptions are made.
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Comparison with Orbits
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Figure 9.1. TEL structure for a 2-bit counter.

The first example is a n-bit synchronous counter. The basic operation of the counter

is that when the clock goes high, the next value of the count is determined from the
When the clock goes low, the new value is latched and fed back to

previous value.
determine the next count. The TEL structure for a 2-bit counter specification is shown
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in Figure 9.1. If not otherwise indicated in the figure, the rules have a time bound
of [0, 5]. Figure 9.1 shows that this example has several events which are enabled by
multiple behavioral rules. In [50], Myers describes graph transformations that create a
new specification which satisfies the single behavioral rule restriction allowing verification
by Orbits [58, 59]. The counter could be specified more compactly if boolean expressions
are used in the TEL structure, but Orbits cannot analyze a specification with boolean
expressions. ATACS must be run on purely event based specifications in order to make
comparisons to Orbits. Results when boolean expressions are used are shown in later
sections.

Table 9.1 shows runtimes and regions generated using ATACS and Orbits for counters
ranging in size from 2 bits to 7 bits. The results using different combinations of opti-
mizations in ATACS are indicated in the tables as follows: “Geom” indicates the geometric
algorithm presented in Section 3 without any optimizations. “Geom+All” indicates the
geometric algorithm with all optimizations on. ‘PO” indicates the POSET algorithm
without any optimizations. “Sub/sup” indicates the POSET algorithm with the subset
and superset optimizations. “Inter” indicates that only the interleaving optimization is
used, and “all” indicates that subsets, supersets, and interleaving are used. The last
column, “Orbits”, gives the results of running Orbits. Orbits also contains many
optimizations, all of which are used for this comparison. FEntries of “mem” in the
table indicate that the machine, a 400MHz Pentium II with 384MB of physical memory
and 768Mb of swap space, runs out of memory. The example size is indicated next to
the example name, where “E” represents the number of events and “R” represents the
number of rules. Runtime comparisons are difficult between ATACS and Orbits since
ATACS is implemented in C and Orbits is implemented in Scheme. Although Orbits is
run on a compiled version of Scheme, which is much faster than interpreted Scheme, its
runtimes are still degraded by the differences in implementation language. For this reason,
differences in regions generated are useful to compare the algorithms in an implementation
independent way.

The maximum counter size that Orbits can analyze is 3 bits. Orbits requires 1648
seconds and 10,222 regions to analyze a 3 bit counter, while the POSET algorithm with
all optimizations can analyze a 3 bit counter in .07 seconds and 89 regions. This dramatic
difference in region count and runtime occurs because the graph transformation adds n!

new events for each event that has n behavioral rules. In the 3-bit counter most of the
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Runtimes for counters (in seconds)
Example E/R | geom | geom+All | PO | sub/sup | inter | all | Orbits

cnt2 40/77 .08 .04 07 07 07 .07 |5

cnt3 45/98 17 .08 2 2 07 | .07 | 1648
cntd 93/215 mem | 1.1 mem | mem .73 73 | mem
cntb 189/453 | mem | 19 mem | mem 19 19 mem
cnt6 381/929 | mem | 250 mem | mem 280 | 280 | mem
cnt7 765/1886 | mem | 2436 mem | mem 1945 | 1945 | mem

Regions generated for counters
Example E/R | geom | geom+All [ PO | sub/sup | inter | all | Orbits

cnt2 40/77 211 o7 171 168 o7 49 240

cnt3 45/98 5687 | 89 1627 | 1620 89 89 10222
cntd 93/215 mem | 257 mem | mem 257 | 257 | mem
cntb 189/453 | mem | 705 mem | mem 705 | 705 | mem
cnt6 381/929 | mem | 1857 mem | mem 1857 | 1857 | mem
cnt7 765/1886 | mem | 4737 mem | mem 4737 | 4737 | mem

Table 9.1. Results for counters.

events are enabled by 4 rules, causing a huge combinatorial explosion in the number of
regions produced by Orbits. This example also shows the impact of the interleaving
optimization. For a 3 bit counter, the interleaving optimization reduces the region count
from 1627 regions to 89 regions, and allows the algorithm to analyze up to a 7 bit counter
without running out of memory. Since the number of events enabled by many rules is high
in this example, eliminating unnecessary rule firing interleavings produces a dramatic
reduction in regions and runtime. This example also has another interesting result.
Table 9.1 shows that the optimizations have a much greater effect than the POSET
algorithm on improving performance. Although the POSET algorithm does perform
better that the geometric algorithm when they are both run without optimizations, the
region counts are identical when the geometric algorithm and the POSET algorithm are
run with optimizations. This occurs because the interleaving optimization is able to
eliminate rule firing sequences that result in region splitting by the geometric algorithm.

The next example is an asynchronous fifo composed of lazy-active/passive buffers
(LAPB). These buffers perform one communication on their read port to receive a new
data value, followed by another communication on their write port to send the value on
to the next stage. The TEL structure for one stage of the LAPB is shown in Figure 9.2.

Rules which do not have a timing bound in the figure have a bound of [1,5]. The values of
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Figure 9.2. TEL structure for one LAPB stage.

Runtimes for LAPBs (in seconds)

Example E/R | geom | geom+All | PO | sub/sup | inter | all | Orbits
LAPB1 11/21 | .02 .01 .01 01 006 | .006 13
LAPB2 17/32 | 101 2 .8 ) 2 2 2.5
LAPB3 23/44 | mem | 1.4 13 7 1.4 1.2 34
LAPB4 29/54 | mem | 50 mem | 140 19 13 485
LAPB5 35/65 | mem 6429 mem mem mem | 100 mem
LAPB6 41/76 | mem | mem mem | mem mem | 654 mem

Regions generated for LAPBs

Example E/R | geom | geom+All | PO [ sub/sup | inter [ all | Orbits
LAPBI 11/21 | 120 29 o8 42 36 29 42
LAPB2 17/32 | 39,536 | 463 873 538 293 237 464
LAPB3 23/43 | mem 2689 10,691 | 4500 1270 | 949 3271
LAPB4 29/54 | mem 22,418 mem 40,970 7494 | 4574 22,504
LAPB5 35/65 | mem | 298,502 mem | mem mem | 25,419 | mem
LAPB6 41/76 | mem | mem mem | mem mem | 140,663 | mem

Table 9.2. Results for the LAPBs.

L and U used in the figure vary depending on where in the LAPB the stage occurs. If it

is communicating with another lapb circuit, this range is [1, 5] like the rest of the ranges.
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If the circuit is communicating with a dissimilar circuit, these ranges are set to [100, oo,
since the behavior of the environment is assumed to be slow. When many LAPB stages
are composed together the resulting specification has many events that are enabled by
multiple behavioral rules. The results generated for LAPB’s ranging in length from 1
stage to 6 stages are shown in Figure 9.2. The longest LAPB that Orbits can analyze
consists of 4 buffers and requires 22,504 geometric regions and 485 seconds. The analysis
of a LAPB with 4 buffers using the POSET algorithm and all optimizations requires 4188
geometric regions and 17 seconds. The POSET algorithm can analyze up to six buffers.
Also, in this example, the impact of the POSET algorithm is much greater than the
impact of the optimizations. For the largest example where both algorithms complete,
the geometric algorithm with optimization is an order of magnitude slower and generates

an order of magnitude more regions than the POSET algorithm with optimizations.

SelB  Ackl Ack2

I

SdA SACkB SACkC ReqB B ~—— AckOutl
~ ReqOut2
T l l AcKB AckOut2
RegA .| L SelC Ack3 Ack4
AckA =——— A : [ l l
RegqOut3
AcKS «—— AckOut3
RqC| C |, Reqout4
AckOut4

Figure 9.3. 2 level selector.

The next example is the two level selector circuit shown in Figure 9.3. The circuit first
receives a request on the ReqA wire. This causes module A to send a request on the Sel A
wire. It receives a response either on the SAckB wire or the SAckC wire. Module A
then sends a request on either the ReqgB or the ReqC wires, depending on which response
is received for the SelA request. For example, when module B receives the request on
ReqB, it sends a request on SelB. The response determines whether module B initiates a
communication on ReqOutl or ReqOut2. When its output communication is complete, it

sends an acknowledge on AckB. This allows module A to acknowledge that the selection
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Figure 9.4. TEL structure for one selector unit.

is complete is by sending an acknowledge on AckA. The TEL structure for one selector
unit is shown in Figure 9.4. This circuit illustrates the behavior of the algorithm on
specifications with conflict. Three versions of the example are analyzed. In the first, the
B and C blocks are replaced with simple handshakes, and only the A block is analyzed.
In the second, the B block is removed and replaced with a handshake. The third version

contains all three selectors.
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Runtimes for Selectors (in seconds)

Ex. E/R  [geom | g+A | PO |sub/sup |[inter [all [-M | app. | Orbits

sell 18/31 | .3 .02 .25 1 .03 .03 .04 .03 .6

sel2 37/76 | mem | 44 mem | 44 11 5 7 5 152

sel3 23/44 | mem | mem | mem | mem mem | 587 710 295 mem
Regions generated for Selectors

Ex. E/R | geom [ g+A [ PO | sub/sup [ inter | all | -M | app. | Orbits

sell 18/31 | 793 64 378 187 63 58 68 58 133

sel2 37/76 | mem | 13213 | mem | 9476 4479 | 1736 | 2139 | 1711 | 5417
sel3 53/110 | mem | mem | mem | mem mem | 50320 | 67582 | 40291 | mem

Table 9.3. Results for the selector unit

The results for this example are shown in Table 9.3. Since this example has conflict,
two additional columns are added. The first is “-M”. This column gives results if the
merging optimization is not used. All of the other columns contain results based on using
the merging optimization along with the specified one. The results in the “-M” column
are computed with all of the other optimizations on. The second additional column is
“approx”. It is added to the table to show the results when the conflict restriction in
the POSET algorithm is removed. When the “approx” option is used, the algorithm
does not check to see if an event is enabled by a rule with a non-empty choice set when
computing upper bounds in the POSET matrix. All of the other optimizations are also
used with this approximation. In this example and the next example, the set of reachable
untimed states found with this approximation is the same as the set of untimed states
found with the exact algorithm. There is an improvement in runtime on the order of
40% when the approximation is used on the largest example. This shows that the choice
restriction is adding extra regions and degrading performance somewhat, but that the
effect is not dramatic. If conservative results are acceptable, this approximation can
be used to improve performance. If conservative results are not acceptable the runtime
penalty to achieve exact results is not prohibitive.

Table 9.3 also shows that the POSET algorithm in ATACS compares favorably with
Orbits. Orbits requires 152 seconds and 5417 regions to analyze the two selectors
version, while the exact POSET algorithm with all optimizations requires only 1736
regions. For the full circuit with both B and C blocks included, the POSET algorithm

completes the analysis, using 54,725 regions, and Orbits runs out of memory and does
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Figure 9.5. The tag unit circuit.

not complete. These results show that even when the algorithm restricts regions when
conflicts occur, it still generates many fewer regions than Orbits. The results also show
that the merge optimization contributes to a significant increase in performance.

The final example comes from the Intel RAPPID design [60]. The RAPPID design
is a fully asynchronous instruction length decoder for the x86 instruction set. This
design is shown to be 3 times faster while using half the power of a corresponding
synchronous design from a 400 MHz x86 processor. The key to the performance is a
very efficient synchronization mechanism which is called the tagunit. One tagunit is
shown in Figure 9.5. The operation of this circuit is that it can receive a tag from one
of seven other tag units (Zagin;). If the instruction is ready (InstRdy) and the crossbar
is ready (XBRdy), it tags out to one of seven other tag units (TagOut;) depending on
the length of the instruction (Length;). The the tagunit is checked for hazard-freedom
using ATACS and Orbits, and the results are shown in Table 9.4. In order to parameterize
the example, we verified tagunits of various sizes where the size is the number of units
from which a tag could be received and to which a tag can be transmitted. The tagunit
specification contains many rules with non-empty choice sets, and the impact of the
choice restriction is illustrated using the approximation described previously. The result
of the approximation in the tagunit is similar to the result in the selector. Removing the
choice restriction produces approximately a 40% improvement in runtime for the largest
tagunit. Unlike the selector, Orbits completes the largest tagunit specification. Orbits
does not fail due to state explosion in this example, but ATACS with all optimizations

produces approximately one third the regions that Orbits produces for all sizes of tagunit
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except size one. This example has fewer events which are enabled by large numbers of
rules, which explains the improved performance of Orbits. In this example the merge
optimization is key to good performance. The specification for the tagunit contains very
large merges, and for the larger tag unit, the merge optimization is responsible for an
order of magnitude performance improvement in both speed and runtimes. Without the
merge optimization, ATACS is not competitive to Orbits, which operates on timed Petri

nets.

Runtimes for tag units (in seconds)
Ex. E/R | geom [g+A | PO sub/sup [ inter [ all | -M [ app. | Orbits

tagl 17/42 | 53 4 1 .6 3 2 2 2 3.2
tag2 25/69 | mem | 2.5 18 21 2.2 1.7 |43 1.3 35

tag3 33/98 | mem | 9.4 72 37 7 5.5 30 4.1 66

tagd 41/134 | mem | 25 144 95 14 12 90 9 107
tagh 49/188 | mem | 65 mem | 199 37 34 302 22 162
tagb 57/242 | mem | 135 mem | mem o7 24 697 37 229
tag7 65/304 | mem | 286 mem | mem 103 | 103 | 1871 | 69 284

Regions generated for tag units

Ex. E/R | geom | g+A [ PO |sub/sup [inter [all |-M | app. | Orbits
tagl 17/42 20077 | 717 1133 | 619 378 253 | 253 253 | 442
tag2 25/69 | mem | 1766 8127 | 3696 1011 | 676 1965 622 | 2751
tag3 33/98 | mem | 3018 14265 | 6603 1755 | 1186 | 5903 1085 | 4816

tagd 41/134 | mem | 4688 | 21956 | 10391 2680 | 1831 | 12912 | 1671 | 7409

tagh 49/188 | mem | 6461 | mem | 14844 3771 | 2596 | 24523 | 2365 | 10530
tagh 57/242 | mem | 8773 | mem | mem 5044 | 3497 | 40836 | 3183 | 14179
tag7 65/304 | mem | 11051 | mem | mem 6483 | 4518 | 64191 | 4109 | 18356

Table 9.4. Results for tagunit.

The tagunit also provides a good example of the improvement that is gained by
representing a circuit in the more concise level based form. Table 9.5 shows that the
level based tag unit requires less time and fewer regions than the event based tag unit
for all algorithm and optimization combinations. It also shows that the impact of
all optimizations are not as dramatic on the level based specification, and that the
interleaving optimization produces no benefit since it cannot be applied when rules have
level expressions. When all optimizations are used, the POSET algorithm completes

analysis on the seven stage, level based tag unit in 13 seconds, using 1246 regions. This is
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nearly a five times improvement in runtime and region count over the POSET algorithm

with all optimizations on the event based specification.

Runtimes for tag units (in seconds)

Ex. E/R | geom | g+A | PO | sub/sup | inter | all | -M | app. | Orbits

tag7? 65/304 mem | 286 mem | mem 103 | 103 | 1871 | 69 284

_tag7 101/180 | 117 13 28 17 28 17 79 13 n/a
Regions generated for tag units

Ex. E/R | geom | g+A | PO | sub/sup | inter | all | -M | app. | Orbits

tag7 65/304 mem | 11051 | mem | mem 6483 | 4518 | 64191 | 4109 | 18356

l_tag7 101/180 | 9151 | 2089 1727 | 1246 1727 | 1246 | 2389 1246 | n/a

Table 9.5. Comparison with level based tag unit

In our experience, ATACS with all of the optimizations performs better than Orbits in
all specifications that have multiple behavioral rules. ATACS is also an improvement over
Orbits since it can analyze level based specification which more concisely represent the
circuit. If a specification does not have multiple behavioral rules or level expressions, the

ATACS algorithm and the Orbits algorithm produce similar results.

9.2 Comparison with Other Verification Methods

Geometric region based timing analysis is often dismissed as impractical due to its
performance on highly concurrent examples. These algorithms do perform quite poorly
compared to other algorithms if the POSET approach is not used. However, this section
shows that the POSET algorithm far outperforms other approaches on highly concurrent
specifications.

The first two examples, Alpha and Beta shown in Figure 9.6, are presented by Bozga
in [13]. Each stage of the Alpha example is composed of a single event which can fire
repeatedly at a given interval and is not effected by any other events in the system.
The authors of [13] show that techniques based on DBMs (i.e., geometric regions) can
only handle 5 stages of this highly concurrent example while their symbolic discrete-time
technique using numerical decision diagrams (NDDs) can handle 18 stages in 12 hours
on a SUN UltraSparc with 256 MB of memory. A loglog plot of the results from [13] and
our results using POSET timing on a SPARC 20 with 128 MB of memory are shown
in Figure 9.7. These results indicate that POSET timing is orders of magnitude faster
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and more memory efficient. In fact, our techniques found the reachable states space for
512 stages in about 73 minutes using 112 MB of memory. This simple example clearly
has only one untimed state regardless of the number of stages, and POSET timing can
represent the timed state space using only one geometric region. Qur technique does not
find the region in its first iteration, however. It first finds a number of smaller regions
before finding the final region that is a superset of all the rest. Therefore, although its

performance is very good, it does not analyze the example instantaneously.

at
[0,15] C$ [0,15]< ) [0,15]
a

Alpha Beta

Figure 9.6. TEL structures for the Alpha and Beta examples.

One stage of the Beta example is composed of one state bit per stage with two events,
one to set and one to reset the bit. In [13], Bozga shows that DBMs can only handle 4
stages while their technique can handle 9 stages. A semilog plot of their results and ours
are shown in Figure 9.8. POSET timing can handle 14 stages in 108 MB of memory in
just 16 minutes. For the Beta example, the number of states is exactly 2" where n is the
number of stages, so POSET timing could handle an example with 32 times more untimed
states than in [13]. Again, POSET timing is able to represent all the timing behavior in
this example using one geometric region per state. Clearly, the Alpha and Beta examples
are ideally suited to our algorithm, but they are used in [13] to demonstrate the weakness
of traditional geometric region based methods.

The last example is a STARI communication circuit described in detail by Greenstreet
in [34, 33]. The STARI circuit is used to communicate between two synchronous systems
that are operating at the same clock frequency, 7, but are out-of-phase due to clock skew
which can vary from 0 to skew. The TEL structure for the environment of this circuit is
composed of a clk process (Figure 9.9(a)), a transmitter (Figure 9.9(b)), and a receiver
(Figure 9.9(c)). The STARI circuit is composed of a number of FIFO stages built from 2
C-elements and 1 NOR-gate per stage (Figure 9.9(d)), each of which has a delay bound
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of [I,u]. There are two properties that need to be verified: (1) each data value output
by the transmitter must be inserted into the FIFO before the next one is output (i.e.,
ack(1l)— precedes z(0).t— and z(0).f—) and (2) a new data value must be output by the
FIFO before each acknowledgment from the receiver (i.e., z(n).t4+ or z(n).f+ precedes
ack(n+1)—) [64]. To guarantee the second property, it is necessary to initialize the FIFO
to be approximately half-full [33]. In addition to these two properties, we also verified
that every gate is hazard-free (i.e., once a gate is enabled, it cannot be disabled until it

has fired).

clk+ x(0).t- x(0).f- ack(n+1)+
["C'k] Clk] _ _
o >< MICIRCUINE
[clk]
clk- x(0).t+ x(0).f+ ack(n+1)-
x(0).t+ # x(0).f+
X(0).t- #x(0).f-
@ (b) ©

RO={ [clk-, cIk+], [X(0).t-, X(0).t+], [X(0).t-, x(0).f+], [ack(n)+, ack(n)-],
o IXC)t, X(0)-t#], [XC).F- x(0).F-], [ack(i)+, ack(i)] ...}

. x(i).f+
x(i).t+
[ack(i+1) & x(i-1).t] < > [Fack(i+1) & N_X(i'l)'t]_ </ > [~ack(i+1) & ~x(i-1).1]
[ack(i+1) & x(i-1).f]
x(i).t- x(i).f-
ack(i)+
[x(i).t | x(i)f] ( f [~x(i)-t & ~x(i).f]
ack(i)-
(d)

Figure 9.9. TEL structures for the STARI example (a) the clock process with timing
constraints = [m, 7]; (b) the transmitter process and (c) the receiver process with timing
constraints = [0, skew]; and (d) a STARI FIFO stage with timing constraints = [[, u].

There have been nice proofs of STARI’s correctness by Greenstreet [33] and Hul-
gaard [38], but they have been on abstract models. In [64], Tasiran states that COSPAN,

which uses the unit-cube (or region) technique for timing verification [6], runs out of
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memory attempting to verify a 3 stage gate-level version of STARI on a machine with 1
GB of memory. This paper goes on to describe an abstract model of STARI for which
they could verify 8 stages in 92.4 MB of memory and 1.67 hours. We first verified STARI
at the gate-level with delays from [64] (i.e., 7 = 12, skew= 1, | = 1, and u = 2). Using
POSET timing, we can verify a 3 stage STARI in 0.74 MB in only 0.40 seconds. For
an 8 stage STARI, the verification took 12 MB and only 55 seconds. In fact, POSET
timing could verify 10 stages in 124 MB of memory in less than 20 minutes. This shows
a nice improvement over the abstraction method and a dramatic improvement over the
gate-level verification in COSPAN. For 10 stages, POSET timing found 14,529 untimed
states and only needed 15,349 geometric regions to describe the timed state space. This
represents a ratio of only 1.06 geometric regions per untimed state.

Finally, the complexity of POSET timing is relatively independent of the timing
bounds used. We also ran our experiments using [ = 97 and v = 201, skew= 101,
and m = 1193 which found more untimed states. With [ = 102, we found less untimed
states. Both cases with higher precision delay numbers had comparable performance to
the one with lower precision delay numbers. This shows that higher precision timing
bounds can be efficiently verified and can lead to different behaviors. It would not be
possible to use this level of precision with a discrete-time or unit-cube based technique,

since the number of states would explode with such large numbers.

9.3 Implicit Methods

This section describes the memory improvements that are achieved by the application
of the MTBDD region representation described in Chapter 7. Results are presented
on a parameterized version of the high-performance FIFO element described by Molnar
in [48] and the arbiter presented by Greenstreet in [32]. These specifications are highly
concurrent and produce a large number of geometric regions.

Figure 9.11 shows the memory usage pattern of the state space exploration for 4
stages of the timed FIFO for both the explicit and implicit methods. The x-axis shows
the number of regions explored and the y-axis shows the maximum memory used to that
point in the state space exploration. The solid lines represent the implicit method and the
dashed lines represent the explicit method. The graphs show that the implicit method not
only yields a significant overall improvement in memory usage, but also that the memory

usage trends for the implicit method are much better. As the number of regions grows
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very large, the amount of memory used by the implicit method approaches an asymptotic
value. This occurs since once the BDDs get mostly full, adding additional regions does
not add significant memory due to the node sharing behavior of BDDs. When the BDDs
get large and a new region is added, most of the nodes needed for this state are already
in the current BDD, and very little new memory is necessary. With explicit methods, on
the other hand, each new region throughout the state space exploration requires a new
allocation of memory, causing the memory usage of the explicit method to grow linearly

with the number of regions.
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Figure 9.11. FIFO memory performance.

The second example is the arbiter design presented in [32]. Most arbiters are designed
to minimize the probability of a metastability failure. However, since metastability is rare,
this arbiter is designed to maximize performance when there is no metastability. It does so
by using a highly concurrent, timed design. Instead of a standard four-phase handshake,
this arbiter uses an asP* protocol [48] which uses timed pulses for communication. The
arbiter only works if the timing on the pulses is correct. The timed state space of the
arbiter is very large due to its high concurrency. The TEL structure representing the
arbiter has 30 signals, 67 events and 73 rules. Since the number of rules is high, the

matrices representing these regions are quite large and use a lot of memory. The large
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state space and the large size of the regions make the arbiter an excellent candidate for
the use of MTBDDs to improve memory performance.

The number of reachable boolean states is highly dependent on the delay ranges
specified. Two versions of the arbiter are used to measure the MTBDD improvement.
The delays in the first version result in the generation of 22,953 untimed states and
101,273 regions when the POSET algorithm is used. State space exploration requires
~550Mb of memory using the explicit representation and ~130Mb of memory using the
MTBDD representation, which is slightly more than a 3 times memory improvement.
Unfortunately, the MTBDD representation results in an order of magnitude degradation
in runtime. It takes ~9000 seconds to complete compared to ~2800 seconds for the
explicit representation. This is not a good tradeoff if there is sufficient memory to
complete the state space exploration using the explicit method. However, the experiment
using the arbiter with the larger state space shows that the MTBDD method can allow
larger examples to be analyzed. By increasing the delay ranges, the state space size of
the arbiter is increased to 45,552 untimed states and 149,708 regions. On this example,
the explicit method runs out of memory after consuming over 850Mb while the MTBDD
method complete using ~300Mb and ~17,000 seconds. These results show that, while
slow, the MTBDD method does allow examples to complete that could not complete

using the explicit method.

9.4 Application to Synchronous Circuits

The POSET algorithm in ATACS has been used to analyze several circuits from the
guTS (gigahertz unit Test Site) integer microprocessor designed at IBM’s Austin Research
Laboratory and presented by Hofstee in [35]. The results of this experiment, which we
first first present in [10], demonstrate that asynchronous analysis techniques can be used
to fill gaps in synchronous design methodology for highly timed synchronous circuits.

The purpose of the guTS design is to demonstrate the performance gains that can
be achieved using aggressive circuit design. It is implemented in a 0.25y CMOS process
available in 1997. The high-performance of the circuit is a result of the circuit design,
which is done in a dynamic circuit style known as delayed-reset domino and described by
Nokwa in [55] and Chappell in [21]. Although TEL structures and the POSET algorithm
were originally developed to analyze asynchronous circuits, they are well suited to the

analysis of delayed-reset domino circuits.
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The guTS microprocessor contains a set of macros which operate synchronously. A
delayed-reset domino macro consists of a number of levels of dynamic gates, each of which
receives inputs from preceding layers. Standard domino gates use a common clock that
acts as a timing reference. In a delayed-reset design, each level of dynamic gates receives
its own, precisely timed clock, which is generated by a buffer chain within the macro.
The local clocks travel through the logic along with the data, a reset wave preceding each
computation wave. This technique allows approximately one-half cycle for each gate to
reset and one-half cycle for each gate to evaluate. The cycle time for a delayed-reset
domino macro is set by adding the necessary precharge and evaluate times for a single
gate. If multiple gates operate on the same precharge signal, cycle time is set by adding
the evaluate delay through all the stages to the precharge delay. Due to the overlapping
of the precharge and evaluate phases, the delayed-reset domino approach significantly
increases the amount of dynamic-logic that can be placed in a macro at a given clock
frequency.

The delayed-reset domino gates used in the guTS processor lack the “foot” device
that is included in a standard domino gate. The purpose of this device is to turn off the
gates’ pulldown stack during the precharge phase. Removing this device allows the gate
to switch 5% to 15% faster. Alternatively, the gate can compute a more complex logic
function using the same transistor stack height [55]. In order to remove this transistor, it
is necessary to ensure that the evaluate logic is not on during the precharge phase. This
is the case if all inputs to the gate are guaranteed to be low during the precharge phase.
To meet this requirement, the inputs to the macro must be pulsed. Combined with the
requirement that the inputs to each gate remain stable high long enough to switch the
dynamic node, this results in a two sided timing verification problem which is unusual
for a synchronous design.

In the guTS processor, the macro level timing verification is done using extensive
SPICE level circuit simulation [57]. After the delay behavior of the macros is characterized
by designers in SPICE, it is incorporated into a chip level timing model for chip level
static timing verification. This was a successful approach for this processor since it
worked in first silicon. However, in order to ensure the correctness of the processor over
all variations in delay, large amounts of delay margin are included in the design of the
macros. If it is possible to formally verify the macros, less margin is necessary to have

confidence in the processor’s correctness, which IBM designers estimate may result in
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performance improvements up to 10%. The timing constraints that need to be checked in
the delayed reset domino macros are very similar to the correctness constraints necessary
for asynchronous circuits, and the delayed reset domino circuits are quite similar to
asynchronous circuits. Therefore, an asynchronous timing verification tool is a natural

choice to be used for formal verification of the macros.

9.4.1 Verification of Gate Level Models

ATACS is used to verify several of the macros from the guTS processor. The first
circuit is a combined multiplexor and latch (MLE). This circuit is small enough to verify
at the gate level, and is shown in Figure 9.12. The goal with this circuit is to verify that
the timing specification which is supplied with the circuit indeed guarantees that the
circuit works correctly. The timing specification describes the timing requirements that
must be met by any circuit communicating with the MLE. It is derived from SPICE
level simulation and the circuit designers knowledge of how the circuit works. The
timing specifications are also used as the basis for chip level static timing analysis. In
order to ensure that the chip-level static timing analysis is modeling all timing behavior,
each macro needs to be formally verified in the environment described by the timing
specification. ATACS verifies the MLE circuit in a few seconds on a 400MHz Pentium II.

The MLE circuit contains both static and dynamic gates. The inputs to static gates
are allowed to be unstable since this does not immediately cause a failure. However, if
a glitch on the output of a static gate propagates to the input of a dynamic gate, it can
cause a failure. In the MLE circuit, the gate driving the signal “output complement” is
static. In every cycle where “output complement” does not fall, there is a glitch on its
inputs. At the end of the precharge phase, the signal “Output_” is always high and it
feeds one of the inputs to the static gate. When the clock rises, “output complement”
always begins to fall. However, the signal “Output_” falls later in the clock cycle if the
selected data value is high. When “Output_” falls, one of the inputs to the static gate
is driven low and “output complement” rises again, producing a glitch. ATACS detects
this glitch and determines that it cannot propagate to the output of the circuit.

The next circuit is a dynamic PLA that is used in the processor’s control circuitry.
Dynamic PLAs are easy to generate automatically and have predictable area and delay.
In order to make the PLAs fast, they are controlled using self-resetting circuitry. An

example of the control circuitry is shown in Figure 9.13. The circuit uses a very aggressive



and plane control

/i —

128

Output Latched

[: Output True CLK_
DEO
Pd

Figure 9.12. The MLE circuit.

>0

propogate control

Output Complement

g e

ME

v

|—O‘ pl

L

g

targors L0 Lo e o —

dual-rail inputs

¥

Figure 9.13. PLA control.

nl

n2

technique to determine when its inputs are valid. The inputs are presented to the

circuit dual-rail. When the inputs are valid the sensor transistors are turned on. These



129

Clk1
\ \ \ \ \ \ \ \

\ Clk2

‘ Clk3

Designed Celldelay = Evaluate: 129 - 139, Precharge:149-153

Figure 9.14. Model for the compare unit.

transistors are all connected to a single node, n1, which has been precharged high. The
sensor transistors are sized so that one of them must be turned on for each input in order
for nl to discharge quickly. However, if one input arrives much earlier than the rest,
eventually its single sensor transistor can discharge nl, erroneously causing the PLA to
begin evaluating early. This completion detection circuit is highly timing dependent and
only works if the inputs are guaranteed to arrive within a narrow time interval. After the
falling edge of nl propagates through four inverters, the node n2 falls. When this node
falls, transistor pl is turned on which raises node nl, resetting the completion detection
circuit. The line “and plane control” is used to gate transistors which determine if the
and-plane of the PLA is in precharge or evaluate mode. The line “propagate control” is
used in a similar manner to control whether the output of the and-plane can propagate
to the or-plane of the PLA, which is not shown. This control circuitry is essentially
asynchronous. Asynchronous, self-resetting circuits are difficult for static tools to handle
since they often assume that a transition on an input causes only a single transition on

an output. ATACS is able to verify the circuit using the designed delays in a few seconds.

9.4.2 Verification of Abstracted Models
The next circuit is a compare unit for two 64 bit quantities. It consists of 3 stages of
delayed-reset domino logic. The logic in each stage is exactly the same. A stage consists

of a set of blocks that produce an output which indicates whether its two four bit inputs
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are equal. To do a 64 bit compare, a tree structure is used where the first stage has 16
logic blocks, the second stage has 4 logic blocks, and the final stage has 1 logic block.
Unlike the previous two examples, this circuit is too large for ATACS to verify it using a
representation derived directly from its transistor level schematic. However, with a small
amount of abstraction, it can be verified quickly. It is not necessary to model each of the
64 bits entering the compare unit. Each block in the first level of logic is modeled as a gate
that waits for a single input and produces its output some variable amount of time later.
Variability in input signal arrival times is accounted for by putting an independent delay
range on the arrival time of the abstracted input signal for each of the blocks in the first
level of logic. When this signal rises in the abstracted model, it is equivalent to all eight
input bits to a block becoming stable in the actual circuit. Additionally, since the timing
behavior of each block is the same, the number of input blocks can be reduced from 16
to 8 without effecting the timing behavior of the circuit. Figure 9.14 shows the structure
of the model. Each block is represented as a TEL structure which raises its output signal
129 to 139 time units after the block receives all of its inputs, and lowers its output 149
to 153 time units after its local clock falls. A global clock which controls the transition
times of the local clocks is also modeled but not shown. It takes 3 seconds to explore the
state space of this model using the POSET state space algorithm on a 400MHz Pentium
II. This circuit example also demonstrates the advantages of the level based specification.
A purely event based representation of the comparator takes 7 seconds to complete with
the POSET algorithm and generates three times as many regions. The iteration time
provided by the POSET algorithm makes it reasonable to iteratively adjust the Celldelay
values, global clock speed, and local clock timings to determine the working ranges of the
circuit under a variety of assumptions. The circuit verifies for global clock cycles up to
100ps less than the clock cycle necessary for correct operation in the Gigahertz processor.

The next example is the verification of the 64-bit adder portion of the Multifunction
Fixed Point Unit (MFXU). This unit computes the results of the add, subtract, and
compare instructions for the processor. The core of the unit is the 64-bit parallel prefix
adder design presented by Silberman in [62], which is based on the algorithm described
by Kogge in [39]. The MFXU adder contains five stages of delayed reset domino logic.
The first stage contains a true/complement mux, stages two through four compute the
propagate and generate signals for the adder, and the fifth stage implements a large mux

which merges many different signals. Each block contains a few domino gates, which can
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vary in delay. Attempts to verify this circuit at the gate level quickly use more than
half of a gigabyte of memory and do not complete. However, a conservative abstraction
of the MFXU verifies in ATACS using the POSET algorithm in about 3 minutes. The
verification does not complete using the geometric algorithm.

The structure of the MFXU abstraction is shown in Figure 9.15. There are two steps
involved in creating the conservative abstraction of the MFXU. The first is to reduce the
complexity of each block by lumping the delay ranges for all of the different gates into one
delay range which represents the minimum and maximum time difference between the
block receiving all of its inputs and generating all of its outputs. For example, suppose
a block contains two domino gates. One of the gates takes 100ps to evaluate and the
other takes 150ps to evaluate. It is conservative to make a model for the block where
the minimum evaluate time for the block is 100ps and the maximum evaluate time for
the block is 150ps. This abstraction does not capture the gate level behavior that one
output of the block is available after 100ps and the other is available after 150ps, but if
a circuit verifies using the abstraction, its actual behavior verifies also. An abstraction
like this is made for the precharge phase and the evaluate phase of each block. Then the
number of blocks is decreased. The goal is to reduce the number of blocks, without hiding
any interesting block interactions. This is done by analyzing a 32-bit wide slice of the
design. Since each block operates on four bits of input, this corresponds to a model that
is eight blocks wide at its input. This model is large enough to include all of the types of
interblock relationships of the larger design, and is small enough to verify quickly.

This is done by starting at the last stage and working toward the first. Every block in
the last stage is included. Then, for every block in the last stage, at least two instances
of each type of block that provides inputs to the last stage are included in the fourth
stage. In this case, four instances of the row8gen block which feeds sumout block in the
fifth stage are included. Only one instance of the halfsum block is included since there
is only one halfsum block in the complete circuit. This process is then repeated for the
fourth through first stages. The resulting model represents a conservative model of the
possible timing relationships in the circuit, and is small enough to verify quickly.

The circuit, abstracted in this way, verifies at its intended clock speed. Therefore, any
gate-level timing relationships that are missed by the abstraction are not necessary in
order for the circuit to run at the specified speed. If this is not the case, then the blocks

on the failure path can be specified in more detail. Although this increases verification
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time, it should not make the problem intractable since the additional detail is limited to
a few blocks. Even the abstracted version of this circuit is quite large, it has complex
timing relationships which provide many possibilities for error. Formal verification gives
confidence that all of the timing behaviors have been considered. Currently, ATACS does
not have an automated method for generating circuit abstractions, and the abstraction
described for this example is done manually. It may be possible to adapt techniques
presented by Kikimoto in [40] to develop an automated method for abstracting blocks of
domino gates.

The final circuit is an arithmetic circuit used in the integer execution unit. It is of
moderate complexity and therefore can be used to test the accuracy of an abstracted
model compared to a gate level model. The gate level model is still somewhat abstract in
that it does not include the full 64-bit datapath, but each instance of a block is described
at the gate level. The results on this macro indicate that the limiting factor in clock
speed is the time that the inputs arrive to the macro, not gate to gate interactions inside

the macro. Because of this, the maximum clock speeds allowed by the abstracted model
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and the gate level model are the same. In order for a gate level model to allow a circuit to
verify at a higher clock speed than an abstracted model there need to be instances of fast
gates in one stage feeding slow gates in another block in the next stage. Such instances

do not occur in this example.

9.5 Summary

Our results show that the POSET algorithm when applied to TEL structures can
dramatically improve the efficiency of timing verification allowing larger, more concurrent
timed systems to be verified. It does so without eliminating parts of the state space, so it
does not limit the properties that can be verified. Due to the efficiency of the algorithm
and the flexibility of TEL structures, ATACS is very effective for the verification of both
both synchronous and asynchronous circuits. Since ATACS is designed for asynchronous
circuits, it can be used to verify many different circuit styles by varying the constraints
that are checked. When circuit-level timing specifications can be verified, less margin
is necessary in each circuit to ensure that the circuit works correctly, which can result
in higher performance. ATACS does a complete state space exploration. Therefore, its
complexity is exponential and it is not practical to verify large circuits at the gate level.
However, for most circuits, a higher level of abstraction is sufficient to verify that the

circuit can run at the desired speed. If this is not the case, it is possible to locally specify
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more detail on paths that fail without causing state explosion.

9.6 Appendix - Reproducibility
All results are run using the version of ATACS checked in to the ATACS CVS tree on
ming.elen.utah.edu under the tag wendy thesis. All of the specification used in this
chapter are checked into the CVS tree under the directory examples, in either the csp,
er, or tel directory. The following table describes the location of the specification for
every example in this section, the switches used to produce each result, and the machine

that the results are produced on.
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| Example | Machine | Location | Column | Switches
n-bit counter | ming csp/centn_synch.csp | geom geometric
geom+All | geometric, subsets,
supersets, interleav
PO posets
sub/sup posets, subsets supersets
inter posets, interleav
all posets, subsets,
supersets, interleav
n-stage FIFO | ming csp/lapbnsv.csp geom geometric
geom+All | geometric, subsets,
supersets, interleav
PO posets
sub/sup posets, subsets supersets
inter posets, interleav
all posets, subsets,
supersets, interleav
n-stage select | ming er/selectorn.csp geom geometric, orbmatch
g+A geometric, subsets,
supersets, interleav,
orbmatch
PO posets, orbmatch
sub/sup posets, subsets,
supersets, orbmatch
inter posets, interleav,
orbmatch
all posets, subsets,
orbmatch, supersets
interleav, orbmatch
-M posets, subsets,
supersets, interleav
app. poapprox, subsets,

supersets, interleav,
orbmatch

Table 9.6. Location of examples.
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| Example | Machine | Location | Column | Switches
n-stage tag | ming er/tagn.csp geom geometric, orbmatch
g+A geometric, subsets,
supersets, interleav,
orbmatch
PO posets, orbmatch
sub/sup | posets, subsets,
supersets, orbmatch
inter posets, interleav,
orbmatch
all posets, subsets,
orbmatch, supersets
interleav, orbmatch
-M posets, subsets,
supersets, interleav
app. poapprox, subsets,
supersets, interleav,
orbmatch
level tag ming csp/tag_level.csp | geom geometric, orbmatch, postproc
g+A geometric, subsets, postproc
supersets, interleav,
orbmatch, postproc
PO posets, orbmatch, postproc
sub/sup | posets, subsets,
supersets, orbmatch, postproc
inter posets, interleav,
orbmatch
all posets, subsets, postproc
orbmatch, supersets
interleav, orbmatch, postproc
-M posets, subsets,
supersets, interleav
app. poapprox, subsets,
supersets, interleav,
orbmatch, postproc
alpha ching csp/alpha.csp n/a posets, subsets, supersets
beta ching csp/beta.csp n/a posets, subsets, supersets
n-stage stari | ching er/stari_oldn.er | n/a posets, subsets, supersets

Table 9.7. Location of examples - continued.
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Example | Machine | Location Column | Switches

arbiter ming tel/arbiter.er explicit | posets, subsets, supersets

implicit | posets, subsets
supersets, bdd

big arbiter | ming tel/arbiter_big.er explicit | posets, subsets, supersets

implicit | posets, subsets
supersets, bdd

mle ming tel/mle.tel n/a disabling, posets

pla ming tel/pla.tel n/a posets

comparator | ming domino_compare.tel | n/a posets, subsets, supersets
mfxu ming tel/mfxu.tel n/a posets, subsets, supersets
clz ming tel/clz.tel n/a posets, subsets supersets

Table 9.8. Location of examples - continued.



CHAPTER 10

CONCLUSIONS AND FUTURE WORK

What does not kill me makes me stronger.
- Friedrich Nietzche

10.1 Summary

The results from the previous chapter show that the algorithms presented in this thesis
significantly improve the efficiency of timed state space exploration, allowing larger, more
concurrent timed systems to be synthesized and verified. These improvements come from
many sources. The first is in the improvement in the specification method. The main
advantage of the TEL structure formalism is that it conforms much more closely to gate
level circuits than purely event based formalism. This makes circuit specifications easier to
construct by hand and also easier to generate automatically. It also results in more concise
circuit specifications, which reduces the memory and runtime necessary to do state space
exploration. The next improvement comes from the POSET algorithm. The POSET
algorithm is the key to improving performance on highly concurrent specifications. The
POSET algorithm computes a single geometric region for many firing sequences that differ
in the firing order of concurrent events and dramatically reduces the number of regions
generated. Although the POSET algorithm is first presented by Rokicki in [58], it is very
limited there. This thesis presents a version of the POSET algorithm which works on a
very broad class of specifications and it presents theory supporting the POSET algorithm
which is missing in [58]. Additional improvements come from the optimizations. As
Chapter 9 shows, optimizations, especially the optimization which eliminates redundant
rule firing interleavings, have a huge impact on performance. Also, for situations where
memory is the limiting factor, the MTBDD optimization is presented which decreases
memory consumption by as much as an order of magnitude. In order to better specify
verification properties, this thesis presents constraint rules. Constraint rules allow for the

verification of interesting concrete time properties without adding significant overhead
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that impacts the performance of the algorithm. Finally, the flexibility of the methodology
is shown by applying it to timed synchronous circuits. This shows that asynchronous
techniques can be useful to synchronous designers, even if they never believe that they

are designing asynchronous circuits.

10.2 Future Work
Although we believe this thesis makes a significant contribution to the area of timed
circuit design automation, there are many areas which it leaves unexplored. The work
presented here can be extended in many directions to improve the specification method,

optimize the algorithms, and increase the number and size of applications.

10.2.1 Specification

The examples of the tag unit and the IBM circuits show that the TEL structure spec-
ification method conforms well to actual logic gates. However additional expressiveness
can be added to make the representation of the circuit more precise. Currently the delay
range on a rule is fixed. In physical circuits, the time it takes for a wire to switch depends
on which transistor in the stack is the last one to activate. If this trigger transistor is
directly connected to the switching wire, the rise or fall time of the wire is less than if
the trigger transistor is at the bottom of the stack, connected to power or ground. Using
the current TEL structure specification, the variance can be partially modeled by using
multiple behavioral rules to enable an event. However, it is difficult to model gates this
way. Gates are most easily modeled using level expressions. When level expressions are
used, the variance in delay due to different trigger transistors is modeled by setting delay
ranges on each rule that are large enough to represent all possible trigger transistors. In
order to make this model more precise, we plan to modify the TEL structure formalism
in a way that allows a separate delay range to be specified for each possible causal event
for a rule.

If each signal transition has a single trigger transistor, this extension is sufficient to
model trigger signal dependent delay. However, delay ranges also vary depending on the
number of transistors in the driving stack that are switching at the same time. If many
driving transistors switch at once, the delay on the output wire is more than if there
is only a single trigger transistor. Modeling this behavior is somewhat more difficult.
The model would need to contain a delay range for each combination of causal events

for each rule with a level expression and the algorithm must be modified to determine
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which combinations of trigger transistors can simultaneously switch. This is a significant
increase in complexity. In the future we plan to determine if the increased accuracy
justifies the increase in complexity.

Improvements can also be made to the verification process. Although we believe that
constraint rules are an effective way to specify concrete verification properties, there is
also value in the ability to specify and verify properties in a formal timed logic. A logic
could be implemented in two ways. If it is possible to express the properties of a logic
using constraint rules, then a translation algorithm which converts timed logic formulas
into constraints is likely to be the best approach. If this is not possible, then substantial

modifications to the POSET algorithm are necessary in order to check logic formulas.

10.2.2 Algorithms

There are a number of ways the POSET algorithm can be improved and extended
to allow for synthesis and verification of larger designs. The first is the application of
partial orders to verification. The current POSET algorithm finds the entire untimed
state space, which is necessary for synthesis. However, in verification many states are
often not relevant to the properties being verified. In a specification with a large untimed
state space, such as the arbiter, partial orders can significantly reduce state space size
by eliminating irrelevant untimed states. In the future, we plan to combine Valmari and
Godefroid’s partial order approach [67, 31] with the POSET algorithm to explore the
potential improvement.

Another possible algorithmic extension involves arbitrary boolean expressions. Al-
though TEL structures allow arbitrary boolean expressions, the POSET algorithm cannot
currently analyze analyze TEL structures containing them. Although specifications can
be transformed to avoid arbitrary boolean expressions, it is more efficient to analyze them
directly if possible. In the future, we plan to extend the POSET algorithm to operate on
TEL structures with arbitrary boolean expressions.

The next algorithmic improvement concerns the use of implicit methods. Currently
MTBDDs are used as a storage mechanism for the geometric regions to improve memory
performance. The first step in extending their use is to implement the stack using
MTBDDs. However, this is also simply the use of MTBDDs as a memory optimizing
data structure. When implicit methods are used for state space exploration, they are
typically used not only to represent the states that have been found, but also to represent

a transition function that controls the generation of new states. The transition function
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is applied repeatedly to the initial state until a fixed point is reached. This is usually
a much faster process than enumerating the states explicitly. The POSET algorithm
is very complex, and therefore it may be unrealistic to express it in a single transition
function. However, if this can be done, it could eliminate the runtime penalty incurred
by the current BDD approach.

The final algorithmic improvement is perhaps the most significant. State space ex-
ploration is a fundamentally exponential problem. Although better algorithms increase
the size of circuits that can be synthesized and verified, this size will always be relatively
small. In order for the technique to scale to industrial size problems, abstraction is needed.
The larger IBM examples from Chapter 9 show the potential of abstraction. Gate level
models are beyond the capabilities of the algorithm but abstracted models verify relatively
quickly. The abstraction in Chapter 9 is done by hand. This is a time consuming and
error-prone process. Automated abstraction is needed in order for the timed circuit
design methodology to be used extensively by circuit designers. When circuits can be
automatically abstracted, it is then possible to create a system for hierarchical verification

which scales to very large designs.

10.2.3 Applications

Additional work is also needed in the application of the algorithms presented here.
Chapter 9 shows that asynchronous techniques can be applied to synchronous circuits.
Since asynchronous algorithms are very general they can be applied directly to a circuit
which uses any type of timing assumptions. However, synchronous circuits make a very
specific timing assumption by using a clock. Timing analysis techniques designed for
synchronous circuits rely too much on this assumption and therefore are not easily exten-
sible to new circuit styles. Asynchronous algorithms ignore it completely and therefore
have much worse performance. In the future, we plan to explore how the synchronous
assumptions can be integrated more tightly with the asynchronous techniques to improve
algorithm performance on timed synchronous circuits.

Although this thesis concentrates on the application of the POSET algorithm to timed
circuits, that is only one potential application. There are many problems which can be
modeled as timed concurrent systems, such as real-time distributed systems. Although
asynchronous circuit researchers and real-time researchers are often working on similar

problems, there is little communication. We plan to attempt to remedy this by applying
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the work presented here to a broader class of concurrent systems and by looking for work
in real-time systems that can be applied to asynchronous circuit design.

The last application is really an extension to the work on the guTS processor shown
in Chapter 9. In order to really test a CAD methodology it must be used on a real,
industrial scale design in progress. The industrial circuits verified by ATACS in this thesis
were already known to work at the time of verification. The verification process only
fails when these circuits are specified incorrectly. The final measure of a verification
technique is how quickly it finds bugs and whether it can find them earlier in the design
cycle than other methods such as simulation. This thesis shows that the algorithms
presented here can be used to verify circuits, but it does not show if they can increase
designer productivity by finding bugs faster. In the future we plan to apply the algorithms
developed here to a large, industrial design and build on the knowledge that is gained

from the experience.
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